Advertisement

Protein Synthesis during Programmed (Physiological) Cell Death

  • R. A. Lockshin
  • Z. F. Zakeri
  • L. M. Yesner

Abstract

Since the terminology surrounding cell death is loosely used, we begin by defining the context in which we employ specific terms.

Keywords

Cell Death Programme Cell Death Myosin Heavy Chain Abdominal Segment Myofibrillar Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Saunders Jr., Death in embryonic systems, Science Wash 154:604 (1966).CrossRefGoogle Scholar
  2. 2.
    J. R. Tata, Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture, Devel.Biol. 12:77 (1966).CrossRefGoogle Scholar
  3. 3.
    R. A. Lockshin, Programmed cell death. Activation of lysis of a mechanism involving the synthesis of protein, J. Insect Physiol. 15:1505 (1969).PubMedCrossRefGoogle Scholar
  4. 4.
    T. M. Alferova, V.A. Soldatenkov, N.I. Sorokina, and I.V. Filippovich, Chromatin degradation in thymus lymphocytes upon inhibition of repair of spontaneous DNA lesions, Radiobioloqiia 27:472 (1987).Google Scholar
  5. 5.
    M. M. Compton, J.S. Haskill, and J.A. Cidlowski, Analysis of glucocorticoid actions on rat thymocyte deoxyribonucleic acid by fluorescence-activated flow cytometry, Endocrinol. 122:2158 (1988).CrossRefGoogle Scholar
  6. 6.
    R. A. Colbert, and D.A. Young, Glucocorticoid-induced messenger ribonucleic acids in rat thymic lymphocytes: rapid primary effects specific for glucocorticoids, Endocrinol. 119:2598 (1986).CrossRefGoogle Scholar
  7. 7.
    I. F. Zhimulev, M.L. Izquierdo, M. Lewis, and M. Ashburner, Patterns of protein synthesis in salivary glands of Drosophila melanogaster during larval and prepuberal developmentRoux’ Arch. Devel. Biol. 190:351 (1981).CrossRefGoogle Scholar
  8. 8.
    A. G. Wadewitz, and R.A. Lockshin, Programmed cell death. Dying cells synthesize a coordinated unique set of proteins in two different episodes of cell death, FEBS Letts. 241:19 (1988).CrossRefGoogle Scholar
  9. 9.
    R. A. Lockshin, Synthesis of unique proteins during cell death. “UCLA Symp. on Molec. and Cell Biology”, J. Cell. Biochem. suppl., 13c. (1989).Google Scholar
  10. 10.
    R. A. Lockshin, and J. Beaulaton, Programmed cell death. Cytochemical evidence for lysosome during the normal breakdown of the intersegmental muscles, J. Ultrastruct. Res. 46:43 (1974a).CrossRefGoogle Scholar
  11. 11.
    R. A. Lockshin, and J. Beaulaton, Programmed cell death. Cytochemical appearance of lysosomes when the death of the intersegmental muscles is prevented, J. Ultrastruct. Res. 46:63 (1974b).CrossRefGoogle Scholar
  12. 12.
    J. Beaulaton, and R.A. Lockshin, Ultrastructural study of the normal degeneration of the intersegmental muscles of Antheraea polyphemus and Manduca sexta (Insecta, Lepidoptera), with particular reference to cellular autophagy, J. Morphol. 154:39 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    R. A. Lockshin, and J. Beaulaton, Chloroquine changes the direction but not the timing of proteolysis, Biol. Cellulaire 36:37 (1979a).Google Scholar
  14. 14.
    R. A. Lockshin, and J. Beaulaton, Cytological studies of dying muscle fibers of known physiological parameters, Tissue and Cell 11:803 (1979b).CrossRefGoogle Scholar
  15. 15.
    M. E. Joesten, M.E. Royston, M. Jimenez, A.G. Wadewitz, D. Melian, and R.A. Lockshin, Gain and loss of fluid in metamorphosing larvae of Manduca sexta, J. Insect Physiol. 28:589 (1982).CrossRefGoogle Scholar
  16. 16.
    C. M. Cheney, and A. Shearn, Developmental regulation of Drosophila imaginal disc proteins: synthesis of a heat shock protein under non-heat-shock conditions, Devel. Biol. 95:325 (1983).CrossRefGoogle Scholar
  17. 17.
    J. M. Velazquez, S. Sonoda, G. Bugaisky, and S. Lindquist, Is the major Drosophila heat shock protein present in cells that have not been heat shocked?, J. Cell. Biol. 96:286 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    E. S. Alnemri, and G. Litwack, Glucocorticoid-induced lymphocytolysis is not mediated by an induced endonuclease, J. Biol. Chem. 264:4104 (1989).PubMedGoogle Scholar
  19. 19.
    J. J. Cohen, and R.C. Duke, Glucocorticoid activation of calcium dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132:38 (1984).PubMedGoogle Scholar
  20. 20.
    J. N. Masters, C.E. Finch, and R.M. Sapolsky, Glucocorticoid endangerment of hippocampal neurons does not involve ribonucleic acid cleavage, Endocrinol. 124:3083 (1989).CrossRefGoogle Scholar
  21. 21.
    J. Beaulaton, G. Nicaise, G. Nicolas, and R.A. Lockshin, Programmed cell death. X-ray microanalysis of calcium and zinc within the electron-dense droplets of the T system in insect muscles, Biol. Cellulaire 56: 271 (1986).Google Scholar
  22. 22.
    H. M. Ellis, and H.R. Horvitz, Genetic control of programmed cell death in the nematode C. elegans, Cell 44:817 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    R. G. Morris, A.D. Hargreaves, E. Duvall, and A.H. Wyllie, Hormone-induced cell death. 2. Surface changes in thymocythes undergoing apoptosis, Am. J. Pathol. 115:426 (1984).PubMedGoogle Scholar
  24. 24.
    V. N. Afanasev, B.A. Korol, Y.A. Mantsygin, P.A. Nelipovich, V.A. Pachatnikov, and S.R. Umansky, Flow cytometry and biochemical analysis of DNA degradation characteristic of two types of cell death. FEBS Letts. 194:347 (1986).CrossRefGoogle Scholar
  25. 25.
    A. I. Sungurov, and T.M. Sharlaeva, Colcemid-induced modification of interphase death.of thymocytes, Radiobiologiia 26:805 (1986).PubMedGoogle Scholar
  26. 26.
    A. H. Wyllie, and R.G. Morris, Hormone-induced cell death. b. Purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment, Am. J. Pathol. 109:78 (1982).PubMedGoogle Scholar
  27. 27.
    R. M. Sapolsky, D.R. Packan, and W.W. Vale, Glucocorticoid toxicity in the hippocampus: in vitro demonstration, Brain Res. 453:367 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Buttyan, Z. Zakeri, R.A. Lockshin, and D. Wolgemuth, Cascade induction of c-fos, c-myc, and heat shock 70 k transcripts during regression of the rat ventral prostate gland, Molec. Endocrinol. 2:650 (1988).CrossRefGoogle Scholar
  29. 29.
    R. Buttyan, C.A. Olssen, J. Pinter, C. Chang, M. Bandyk, P-Y Ng, and I.S. Sawczuk, Induction of TRPM-2 gene is cells undergoing programmed cell death, Molec. Cell Biol. 9:3473 (1989).PubMedGoogle Scholar
  30. 30.
    R. A. Lockshin, Muscle Turnover in Invertebrates and Lower Animals, in: “Degradative Processes in Heart and Skeletal Muscle,” K. Wildenthal, ed., Elsevier, Amsterdam, (1989).Google Scholar
  31. 31.
    F. Denizot, and R. Lang, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods 89:271 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    R. A. Lockshin, A.D. Colon, and A.M. Dorsey, Control muscle proteolysis in insects, Fed. Proc. 39:48 (1980).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. A. Lockshin
    • 1
  • Z. F. Zakeri
    • 2
  • L. M. Yesner
    • 1
  1. 1.Department of Biological SciencesSt. John’s UniversityJamaicaUSA
  2. 2.Department of Physiology and BiophysicsRobert Wood Johnson Medical School-UMDNJPiscatawayUSA

Personalised recommendations