Skip to main content

An Optimization Method for Acoustic Impedance Estimation of Layered Structures Using Prior Knowledge

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 18))

  • 231 Accesses

Abstract

We present an optimization method for estimating acoustic impedance profiles of layered composite materials from ultrasonic pulse-echo data when some prior knowledge is available. The method assumes that: (1) the defect-free material consists of a small number of layers with approximately known thicknesses, impedances, and frequency-independent attenuations, and (2) the defects are thin and consist of either disbonds at an interface or delaminations within a layer. Using the prior knowledge of the impedances as an initial estimate, the impedances may be optimized for a particular set of layer thicknesses. The structure of the layers may then be adjusted, in ways consistent with the nature of expected defects, to improve the fit to the trace. These include altering the thicknesses of the layers and allowing additional layers in the region of an interface and within an existing layer. Furthermore, the impedance values within each layer may be constrained to lie within specified bounds, thus ensuring a solution consistent with the known physical structure of the material. The method may be applied to noisy and band-limited data, and may also be formulated so as to allow recursive estimation of impedance profiles in the absence of prior knowledge. Illustrations of its performance are given in examples using synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. Goupillaud, An approach to inverse filtering of near-surface layer effects from seismic records, Geophysics 26: 754–760 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  2. R. G. Newton, Inversion of reflection data for layered media: A review of exact methods, Geophys. J. R. astr. Soc. 65: 191–215 (1981).

    Article  ADS  MATH  Google Scholar 

  3. E. A. Robinson, Spectral approach to geophysical inversion by Lorentz, Fourier and Radon transforms, Proc. IEEE 70: 455–470 (1982).

    Google Scholar 

  4. K. P. Bube and R. Burridge, The one-dimensional inverse problem of reflection seismology, SIAM Review 25: 497–559 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. P. Jones, Impediography: A new ultrasonic technique for non-destructive testing and medical diagnosis, in “Ultrasonics International 1973 Conference Proceedings,” 214–218 (1973).

    Google Scholar 

  6. J. M. Mendel and F. Habibi-Ashrafi, A survey of approaches to solving inverse problems for lossless layered media systems, IEEE Tr. Geosci. Rem. Sens. GE-18: 320–330 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Habibi-Ashrafi and J. M. Mendel, Estimation of parameters in lossless layered media systems, IEEE Tr. Auto. Contr. AC-27: 31–48 (1982).

    Article  MathSciNet  Google Scholar 

  8. J. M. Mendel and J. Goutsias, One-dimensional normal-incidence inversion: A solution procedure for band-limited and noisy data, Proc. IEEE 74: 401–414 (1986).

    Article  Google Scholar 

  9. I. Koltracht and P Lancaster, Threshold algorithms for the prediction of reflection coefficients in a layered medium, Geophysics 53: 908–919 (1988).

    Article  ADS  Google Scholar 

  10. A. Bamberger, G. Chaventi, Ch. Hemon and P. Lailly, Inversion of normal incidence seismograms, Geophysics 47: 757–770 (1982).

    Article  ADS  Google Scholar 

  11. D. Lesselier, Optimization techniques and inverse problems: Probing of acoustic impedance profiles in time domain, J. Acoust. Soc. Am. 72: 1276–1284 (1982).

    Article  ADS  MATH  Google Scholar 

  12. D. A. Cooke and W. A. Schneider, Generalized linear inversion of reflection seismic data, Geophysics 48: 665–676 (1983).

    Article  ADS  Google Scholar 

  13. D. W. Oldenburg, S. Levy and K. J. Stinson, Inversion of band-limited reflection seismograms. Theory and practice, Proc. IEEE 74: 487–497 (1986).

    Article  Google Scholar 

  14. M. J. D. Powell, TOLMIN: A Fortran package for linearly constrained optimization calculations, DAMTP Report 1989/NA2, University of Cambridge (1989). [This subroutine will be made available through the IMSL and Harwell software libraries.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zala, C.A., McRae, K.I. (1991). An Optimization Method for Acoustic Impedance Estimation of Layered Structures Using Prior Knowledge. In: Lee, H., Wade, G. (eds) Acoustical Imaging. Acoustical Imaging, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3692-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3692-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6641-6

  • Online ISBN: 978-1-4615-3692-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics