Spatial Pulse Response Computing for Reflection - Time Domain Approach

  • Bogdan Piwakowski
  • Bernard Delannoy
Part of the Acoustical Imaging book series (ACIM, volume 18)


The time-domain spatial pulse response functions are largely applied for the analysis of transient fields in problems dealing with radiation (Harris,1981a), but the existing solutions are limited to the specific cases of boundary conditions when the radiating interface is assumed to be either rigid, free or soft. At the same time the problem of reflection is, in fact, generally not treated in the time-domain, except for the specific computations for the radiation coupling functions (Cassereau et Guyomar,1987).The problems of reflection of spherical waves from the planar interface is studied in ω-k domain by means of their decomposition into plane waves.


Plane Wave Reflection Coefficient Spherical Wave Pulse Response Edge Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., Richards, P.G., (1980) “Quantitative seismology, Theory and Methods” W.H.Freedman CompanyGoogle Scholar
  2. Cassereau, D., Guyomar, D., (1987)“Determination of the pulse diffraction of an obstacleby ray modelling, in Acoustical Imaging vol.16,Plenum Press,NY 1988Google Scholar
  3. Delannoy, B., Lasota, H., Bruneel, C., Torquet, R., et Bridoux, E., (1977) “The infinite planar baffles problem in acoustic radiation and its experimental verification” J.Appl.Phys. 50, 5189–5195).ADSCrossRefGoogle Scholar
  4. Harris, G.R., (1981a). “Review of transient theory for a baffled piston” J.Acoust.Soc.Am. 70 (1), 10–20ADSMATHCrossRefGoogle Scholar
  5. Harris, G.R., 1981b). “transient field of a baffled piston having an arbitrary vibration amplitude distribution” J.Acoust.Soc.Am. 70(1), 186–204.ADSMATHCrossRefGoogle Scholar
  6. Guyomar, D., Powers, J,? (1985) “Boundary effects on the transient radiation fields from vibrating surfaces” J.Acoust.Soc.Am. 77(3), 907–915.ADSMATHCrossRefGoogle Scholar
  7. Guyomar, D., (1986) “Théorie et méthodes de la diffraction impulsionelle dans les milieux sans perte et dans les milieux attenuants” Thése d’état, Université de Paris 7.Google Scholar
  8. Lasota, H., Salamon, R., and Delannoy, B., (1984) “Acoustic diffraction analysis by the impulse method: A line impulse response approach” J.Acoust.Soc.Am. 76(1), 280–290ADSCrossRefGoogle Scholar
  9. Lasota, H., (1985) “ Etude du champ acoustique des sources planes dans le domaine temporel” Thése d’état, Université de ValenciennesGoogle Scholar
  10. Piwakowski, B., (1989) In preparation, Thése d’habilitation à diriger de la recherche, Université de ValenciennesGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bogdan Piwakowski
    • 1
    • 2
  • Bernard Delannoy
    • 1
  1. 1.Laboratoire de Physique des Vibrations et d’Acoustique(CNRS,U.A.832 Valenciennes) Institut Industriel du NordVilleneuve d’Ascq CedexFrance
  2. 2.Institute of TelecommunicationTechnical University of GdanskPoland

Personalised recommendations