Quantum Spin Lattice Models: A Coupled-Cluster Treatment

  • R. F. Bishop
  • J. B. Parkinson
  • Yang Xian
Part of the Condensed Matter Theories book series (COMT, volume 6)


Infinite one-dimensional chains of quantum-mechanical spins interacting via localized (typically nearest-neighbour) interactions, and their obvious extensions to regular lattices in higher numbers of dimensions, have been objects of theoretical interest for a very long time. Indeed, the exact energy eigenstates of the one-dimensional spin-half chain interacting via the isotropic Heisenberg interaction between neighbouring sites,. were exactly solved in principle by Bethe1 some sixty years ago. Since then the Bethe-ansatz type of solution has been discovered to be applicable to, and fundamental to, a much wider class of integrable Hamiltonian models. This latter feature undoubtedly explains by itself much of the continuing interest in these spin lattice models. Another reason is that, intriguingly, the exact method of Bethe seems to be surprisingly impervious to being extended to deal with similar models in a higher number of dimensions.


Cluster Operator Couple Cluster Method Truncation Scheme Quantum Spin Chain Exact Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Bethe, Z. Phys. 71:205 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    M. Roger and J.H. Hetherington, Phys. Rev. B 41:200 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    F. Coester, Nucl. Phys. 7:421 (1958)CrossRefGoogle Scholar
  4. F. Coester and H. Kümmel, Nucl. Phys. 17:477 (1960).MATHCrossRefGoogle Scholar
  5. 4.
    R.F. Bishop and H.G. Kümmel, Phys. Today 40(3):52 (1987).CrossRefGoogle Scholar
  6. 5.
    H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Phys. Rep. 36C:1 (1978).ADSCrossRefGoogle Scholar
  7. 6.
    R.F. Bishop and K.H. Lührmann, Phys. Rev. B 17:3757 (1978).ADSCrossRefGoogle Scholar
  8. 7.
    V. Kvasnička, V. Laurinc and S. Biskupič, Phys, Rep. 90C:160 (1982).ADSGoogle Scholar
  9. 8.
    H. Kümmel, in: “Nucleon-Nucleon Interaction and Nuclear Many-Body Problems,” S.S. Wu and T.T.S. Kuo (eds.), World Scientific, Singapore (1984), p. 46.Google Scholar
  10. 9.
    B.D. Day and J.G. Zabolitzky, Nucl. Phys. A366:221 (1981).ADSGoogle Scholar
  11. 10.
    J. Čižek, J. Chem. Phys. 45:4256 (1966); Adv. Chem. Phys. 14:35 (1969).CrossRefGoogle Scholar
  12. 11.
    K. Szalewicz, J.G. Zabolitzky, B. Jeziorski and H.J. Monkhorst, J. Chem. Phys. 81:2723 (1984).ADSCrossRefGoogle Scholar
  13. 12.
    R.J. Bartlett, Ann. Rev. Phys. Chem. 32:359 (1981); J. Phys. Chem. 93:1697 (1989).ADSCrossRefGoogle Scholar
  14. 13.
    R.F. Bishop and K.H. Lührmann, Phys. Rev. B 26:5523 (1982).ADSCrossRefGoogle Scholar
  15. 14.
    K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30:2049 (1984).ADSCrossRefGoogle Scholar
  16. 15.
    U.B. Kaulfuss and M. Altenbokum, Phys. Rev. D 33:3658 (1986).ADSCrossRefGoogle Scholar
  17. 16.
    R.F. Bishop, M.C. Boscá and M.F. Flynn, Phys. Rev. A 40:3484 (1989).ADSCrossRefGoogle Scholar
  18. 17.
    J.S. Arponen and R.F. Bishop, Phys. Rev. Lett. 64:111 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 18.
    M. Funke, U. Kaulfuss and H. Kümmel, Phys. Rev. D 35:621 (1987).ADSCrossRefGoogle Scholar
  20. 19.
    L. Hulthén, Arkiv Mat. Astron. Fysik 26A:No. 11 (1938).Google Scholar
  21. 20.
    P.W. Anderson, Phys. Rev. 86:694 (1952).ADSMATHCrossRefGoogle Scholar
  22. 21.
    R. Kubo, Phys. Rev. 87:568 (1952).ADSMATHCrossRefGoogle Scholar
  23. 22.
    R. Orbach, Phys. Rev. 112:309 (1958).ADSCrossRefGoogle Scholar
  24. 23.
    J. des Cloiseaux and J.J. Pearson, Phys. Rev. 128:2131 (1962).ADSCrossRefGoogle Scholar
  25. 24.
    C.N. Yang and C.P. Yang, Phys. Rev. 150:321 (1966).ADSCrossRefGoogle Scholar
  26. 25.
    J. des Cloiseaux and M. Gaudin, J. Math. Phys. 7:1384 (1966).ADSCrossRefGoogle Scholar
  27. 26.
    L.D. Faddeev and L.A. Takhtajan, Phys. Lett. 85A:375 (1981).MathSciNetADSGoogle Scholar
  28. 27.
    P.P. Kulish and E.K. Sklyanin, Phys. Lett. 70A:461 (1979)MathSciNetADSGoogle Scholar
  29. L.D. Faddeev and L.A. Takhtajan, Usp. Mat. Nauk. 34:13 (1979).Google Scholar
  30. 28.
    L.D. Faddeev, Soviet Sci. Reviews, Contemp. Math. Phys. C1:107 (1980).Google Scholar
  31. 29.
    F.D.M. Haldane, Phys. Lett. 93A:464 (1983); Phys. Rev. Lett. 50:1153 (1983).MathSciNetADSGoogle Scholar
  32. 30.
    E. Lieb, T. Schultz and D. Mattis, Ann. Phys. (NY) 16:407 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  33. 31.
    I. Affleck and E.H. Lieb, Lett. Math. Phys. 12:57 (1986).MathSciNetADSCrossRefGoogle Scholar
  34. 32.
    J.B. Parkinson and J.C. Bonner, Phys. Rev. B 32:4703 (1985)ADSCrossRefGoogle Scholar
  35. M.P. Nightingale and H.W.J. Blote, Phys. Rev. B 32:659 (1986).ADSCrossRefGoogle Scholar
  36. 33.
    I. Affleck, J. Phys.: Condens. Matter 1:3047 (1989).ADSCrossRefGoogle Scholar
  37. 34.
    C.K. Lai, J. Math. Phys. 15:1675 (1974)ADSCrossRefGoogle Scholar
  38. B. Sutherland, Phys. Rev. B 12:3795 (1975).ADSCrossRefGoogle Scholar
  39. 35.
    L.A. Takhtajan, Phys. Lett. 87A:479 (1982)MathSciNetADSGoogle Scholar
  40. H.M. Babujian, Phys. Lett. 90A:479 (1982); Nucl. Phys. B 215:317 (1983).ADSGoogle Scholar
  41. 36.
    I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Phys. Rev. Lett. 59:799 (1987); Commun. Math. Phys. 115:477 (1988).ADSCrossRefGoogle Scholar
  42. 37.
    J.B. Parkinson, J. Phys. C 21:3793 (1988)ADSCrossRefGoogle Scholar
  43. M.N. Barber and M.T. Batchelor, Phys. Rev. B 40:4621 (1989).ADSCrossRefGoogle Scholar
  44. 38.
    J. Arponen, R.F. Bishop and E. Pajanne, in: “Condensed Matter Theories,” Vol. 2, P. Vashishta, R.K. Kalia and R.F. Bishop (eds.), Plenum, New York (1987), p. 357.CrossRefGoogle Scholar
  45. 39.
    J. Arponen, Ann. Phys. (N.Y.) 151:311 (1983).ADSCrossRefGoogle Scholar
  46. 40.
    P.W. Anderson, Science 235:1196 (1987).ADSCrossRefGoogle Scholar
  47. 41.
    N. Trivedi and D.M. Ceperley, Phys. Rev. B 41:4552 (1990).ADSCrossRefGoogle Scholar
  48. 42.
    N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17:1133 (1966).ADSCrossRefGoogle Scholar
  49. 43.
    K. Kubo and T. Kishi, Phys. Rev. Lett. 61:2585 (1988).ADSCrossRefGoogle Scholar
  50. 44.
    J. Carlson, Phys. Rev. B 40:846 (1989).ADSCrossRefGoogle Scholar
  51. 45.
    P.W. Anderson, Mater. Res. Bull. 8:153 (1973).CrossRefGoogle Scholar
  52. 46.
    K. Emrich, Nucl. Phys. A351:379, 397 (1981).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. F. Bishop
    • 1
  • J. B. Parkinson
    • 1
  • Yang Xian
    • 1
  1. 1.Department of MathematicsUniversity of Manchester Institute of Science and TechnologyManchesterEngland

Personalised recommendations