Electron-Hole Liquid Model for High Tc-Superconductors

  • A. Kallio
  • X. Xiong
Part of the Condensed Matter Theories book series (COMT, volume 6)


We propose a theoretical model for high-T c superconductivity based on the existence of two types of mobile charge carriers: electrons and hole-bosons. The bosons are assumed to be mobile in CuO2 planes and the electrons in separate parts of the crystal in order to prevent annihilation. We simulate this situation with a uniform mixture of electrons and bosons by adding a short-range repulsion between them. The model predicts the existence of a linear electronic sound mode which is analogous to the first sound in He-mixtures. The electron component contributes a linear term and the sound mode a cubic term in the electronic specific heat. The transition at Tc is interpreted as a λ—transition whereas the pairs are formed at a higher temperature TBCS- For small hole concentrations the charge carriers form an excitonic bound state of heavy fermion type which is immobile and hence provides an explanation for metal-insulator transition. The model predicts also the doping behaviour in agreement with experiment including the pressure dependence of T c. The specific heat linear term is predicted to increase with pressure for hole doped and to decrease for electron doped superconductors. The predictions are valid for all types of high T c-compounds and also for the new electron superconductors. The value of normalized slope of specific heat discontinuity at T c can exceed the maximum values obtainable by the BCS-and Eliashberg theories.


Pressure Dependence Mobile Charge Carrier Knight Shift Sound Mode Pair Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Bednorz and K.A. Müller, Z. Phys. B64, 189 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    A. Kallio and X. Xiong, Phys. Rev. B41, 2530 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    A. Kallio, X. Xiong and M. Alatalo to be published in Recent Progress in Many-Body Theories, Arad, Israel (1989).Google Scholar
  4. 4.
    L.J. de Jongh, Physica C 161, 631(1989).ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Alexandrov, J. Ranninger and S. Robaszkiewicz, Phys. Rev. B33, 4526 (1986)ADSCrossRefGoogle Scholar
  6. B.K. Chakraverty, J. de Phys. Lett. 40, L99 (1979).CrossRefGoogle Scholar
  7. 6.
    A.S. Alexandrov and J. Ranninger, Physica C 159, 367(1989).CrossRefGoogle Scholar
  8. 7.
    P.W. Anderson, G. Baskaran, Z. Zou and T. Hsu, Phys. Rev. Lett. 58, 2790 (1987).ADSCrossRefGoogle Scholar
  9. 8.
    S.A. Kivelson, D.S. Rokhsar and J.P. Sethna, Phys. Rev. B35, 8865 (1987).ADSCrossRefGoogle Scholar
  10. 9.
    J.M. Wheatley, J.C. Hsu and P.W. Anderson, Phys. Rev. B37, 5897 (1988).ADSCrossRefGoogle Scholar
  11. 10.
    M.J. Rice and Y.R. Wang, Phys. Rev. B37, 5893 (1988).ADSCrossRefGoogle Scholar
  12. 11.
    B.K. Chakraverty, D. Feinberg, Z. Hang and M. Avignon, Solid State Commun. 64, 1147 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    Y. Tokura, J.B. Torrance, T.C. Huang and A.I. Nazzal, Phys. Rev. B38,7156(1988).ADSCrossRefGoogle Scholar
  14. 13.
    J.M. Tranquada, S.M. Heald, A.R. Moodenbaugh and Youwen Xu, Phys. Rev. B38, 8893 (1988).ADSCrossRefGoogle Scholar
  15. 14.
    D.Y. Xing, M. Liu and C.S. Ting, Phys. Rev. B38, 11992 (1988).ADSCrossRefGoogle Scholar
  16. 15.
    M.W. Shafer, T. Penney, B.L. Olson, R.L. Greene and R.H. Koch, Phys. Rev. B39, 2914(1989).ADSCrossRefGoogle Scholar
  17. 16.
    H. Ye, W. Lu, Z. Yu, X. Shen, B. Miao, Y. Cai and Y. Qian, Phys. Rev. B36, 8802 (1987).ADSCrossRefGoogle Scholar
  18. 17.
    J.E. Demuth, B.N.J. Persson, F. Holtzberg and C.V. Chandrasekhar, Phys. Rev. Lett. 64, 603 (1990).ADSCrossRefGoogle Scholar
  19. 18.
    P. Nozieres, and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195(1985).ADSCrossRefGoogle Scholar
  20. 19.
    W.E. Pickett, Rev. Mod. Phys. 61, 480 (1989)Google Scholar
  21. O. Laborde, M. Potel, P. Gougeon, J. Padiou, J.C. Levet and H. Noel, Phys. Lett. A 147, 525 (1990).ADSCrossRefGoogle Scholar
  22. 20.
    W.F. Brinkman and T.M. Rice, Phys. Rev. B7, 1508 (1973)ADSCrossRefGoogle Scholar
  23. T. Chakraborty and P. Pietiläinen, Phys. Rev. Lett. 49, 1034 (1982)ADSCrossRefGoogle Scholar
  24. T. Chakraborty, A. Kallio, L.J. Lantto and P. Pietiläinen, Phys. Rev. B27, 3061 (1983).ADSCrossRefGoogle Scholar
  25. 21.
    L.V. Keldysh, and A.N. Kozlov, Sov. Phys. JETP 27, 521, (1968).ADSGoogle Scholar
  26. 22.
    W.W. Warren, Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell and G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989).ADSCrossRefGoogle Scholar
  27. 23.
    C.A. Swenson, R.W. McCallum, and K. No, Phys. Rev. B 40, 8861 (1989).ADSCrossRefGoogle Scholar
  28. 24.
    G. Sparn, M. Baenitz, S. Horn, F. Steglich, W. Assmuss, T. Wolf, A. Kapitulnik, and Z.X. Zhao, Physica C 162-164, 508 (1989).ADSCrossRefGoogle Scholar
  29. 25.
    T. Sasaki, Y. Muto, T. Shishido, T. Sasaki, T. Kajitani, M. Furuyama, N. Kobayashi, and T. Fukuda, Physica C 162-164, 504 (1989).ADSCrossRefGoogle Scholar
  30. 26.
    J.W. Loram, K.A. Mirza, W.Y. Liang and J. Osborne, Physica C162-164, 498 (1989).ADSCrossRefGoogle Scholar
  31. 27.
    R.A. Fisher, S. Kim, S.E. Lacy, N.E. Phillips, D.E. Morris, A.G. Markelz, J.Y.T. Wei and D.S. Ginley, Phys. Rev. B 38, 11942 (1988)ADSCrossRefGoogle Scholar
  32. N. E. Phillips, R. A. Fisher, J. E. Gordon, and S. Kim, Physica C 162-164, 1651 (1989).ADSCrossRefGoogle Scholar
  33. 28.
    S. N. Artemenko, I. G. Gorlova, and Yu. I. Catyshov, Pis’ma Zh. Eksp. Teor. Fiz. 49, 566 (1989)ADSGoogle Scholar
  34. D. H. Kim, A. M. Goldman, J. H. Kang, and R. T. Kampwirth, Phys. Rev. B 40, 8834(1989).ADSCrossRefGoogle Scholar
  35. 29.
    P. Minnhagen, Solid State Comm. 71, 25 (1989)ADSCrossRefGoogle Scholar
  36. V. Cataudella and P. Minnhagen, Physica C 166, 442 (1990).ADSCrossRefGoogle Scholar
  37. 30.
    A. Schilling, H. R. Ott, and F. Hulliger, Physica C 161, 626 (1989)ADSCrossRefGoogle Scholar
  38. F. Seidler, P. Böhm, H. Geus, W. Braunisch, E. Braun, W. Schnelle, Z. Drzazga, N. Wild, B. Roden, H. Schmidt, D. Wohlleben, I. Felner and Y. Wolfus, Physica C 157, 375 (1989).ADSCrossRefGoogle Scholar
  39. 31.
    R. Akis, and J. P. Carbotte, Physica C 157, 395 (1989).ADSCrossRefGoogle Scholar
  40. 32.
    M-F. Xu, H-P. Baum, A. Schenstrom, B.K. Sarma, M. Levy, K.J. Sun, L.E. Toth, S.A. Wolf and D.U. Gubser, Phys. Rev. B37, 3675 (1988)ADSCrossRefGoogle Scholar
  41. J. Hu, S. Zhang, Q. Zhang, W. Cai, T. Deng, L. Zhang, Y. He, and J. Xiang, Physica C 162-164, 444 (1989)ADSCrossRefGoogle Scholar
  42. T. Wu, T. Laegreid, K. Fossheim J.D. Axe and Y. Hidaka, Physica C 162-164, 448 (1989).ADSCrossRefGoogle Scholar
  43. 33.
    R. Friedberg and T.D. Lee, Phys. Rev. B39, 11482 (1989); Phys. Lett. A138, 423 (1989).ADSCrossRefGoogle Scholar
  44. 34.
    H. Takagi, S. Uchida and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).ADSCrossRefGoogle Scholar
  45. 35.
    R. Friedberg, T.D. Lee and H.C. Ren, CU-TP-460 (1990), Columbia University.Google Scholar
  46. 36.
    A. Kallio and X.Xiong, Dept. of Theo. Phys., Univ. of Oulu, 1990, Report 50.Google Scholar
  47. 37.
    C. Murayama, N. Märi, S. Yomo, H. Takagi, S. Uchida and Y. Tokura, Nature 339, 293 (1989).ADSCrossRefGoogle Scholar
  48. 38.
    J.T. Markert, J.J. Neumeier, E.A. Early, C.L. Seaman, T. Moran, and M.B. Maple, Phys. Rev. Lett. 64, 80 (1990).ADSCrossRefGoogle Scholar
  49. 39.
    L. J. Lantto, Phys. Rev B36, 5160 (1987).ADSCrossRefGoogle Scholar
  50. 40.
    P. Pietiläinen, private communication.Google Scholar
  51. 41.
    C. E. Campbell, and J. G. Zabolitzky, Phys. Rev. B 29, 123 (1984).ADSCrossRefGoogle Scholar
  52. 42.
    P. Pietiläinen and A. Kallio, Phys. Rev. B 27, 224 (1983).ADSCrossRefGoogle Scholar
  53. 43.
    G. Ahlers in “The Physics of Liquid an Solid Helium”, Eds. K.H. Bennemann and J.B. Ketterson, by John Wiley, P126, (1976).Google Scholar
  54. 44.
    L. G. Daunt, R. E. Probst, H. L. Johnston, L. T. Aldrich, and A. O. Nier, Phys. Rev. 72, 502 (1947).ADSCrossRefGoogle Scholar
  55. 45.
    E.M. Lifshits and L.P.Pitaevskii, Statistical Physics II, Pergamon, 1980, p.91.Google Scholar
  56. 46.
    H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida and Y. Tokura, Phys. Rev. B40, 2254 (1989).ADSCrossRefGoogle Scholar
  57. 47.
    J. B. Torrance, A. Bezinge, A. I. Nazzal, and S. S. P. Parkin, Physica C 162-164, 291 (1989).ADSCrossRefGoogle Scholar
  58. 48.
    T. Penney, M. W. Shafer, and B. L. Olson, Physica C 162-164, 63 (1989).ADSCrossRefGoogle Scholar
  59. 49.
    J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, S. S. P. Parkin, D. T. Keane, S. J. LaPlaca, P. M. Horn, and G. A. Held, Phys. Rev. B 40, 8872 (1989).ADSCrossRefGoogle Scholar
  60. 50.
    K. Kitazawa, IBM J. Res. Develop. 33, 201 (1989).CrossRefGoogle Scholar
  61. 51.
    T. Zetterer, H.H. Otto, K. Meidenbauer, and K.F. Renk, Physica C162-164, 514 (1989).ADSCrossRefGoogle Scholar
  62. 52.
    M. R. Schafroth, Phys. Rev 111, 72 (1958).MathSciNetADSCrossRefGoogle Scholar
  63. 53.
    P. W. Anderson, Phys. Rev. 110, 827 (1958).MathSciNetADSCrossRefGoogle Scholar
  64. 54.
    N. Tanahashi, Y. Lye, T. Tamegai, C. Murayama, N. Mori, S. Yomo, N. Okazaki, and K. Kitazawa, Jpn. J. Appl. Phys. 28, L762 (1989).ADSCrossRefGoogle Scholar
  65. 55.
    D.O. Pederson, A.El Ali, Z.Z. Sheng and A.M. Hermann, Phys. Rev. B40, 7313 (1989).ADSCrossRefGoogle Scholar
  66. 56.
    L. V. Gasparov, V. D. Kulakovskii, O. V. Misochko, A. A. Polyanskii, and V. B. Timofeev, Physica C 160, 147 (1989).ADSCrossRefGoogle Scholar
  67. 57.
    K. Kamaras, S. L. Herr, C. D. Porter, N. Tache, D. B. Tanner, S. Etemad, T. Venkatesan, E. Chase, A. Inam, X.D. Wu, M.S. Hegde and B. Dutta, Phys. Rev. Lett. 64, 84 (1990).ADSCrossRefGoogle Scholar
  68. 58.
    K. R. Atkins, “Liquid Helium”, (1959), Cambridge, p. 131.Google Scholar
  69. 59.
    T.R. Roberts and S.G. Sydoriak, Phys. Fluids 3, 895 (1960).ADSCrossRefGoogle Scholar
  70. 60.
    M. E. Reeves, S. E. Stupp, T. A. Friedmann, F. Slakey, D. M. Ginsberg, and M. V. Klein, Phys. Rev. B 40, 4573 (1989).ADSCrossRefGoogle Scholar
  71. 61.
    H. Zimmermann, M. Mali, D. Brinkmann, J. Karprinski, E. Kaldis and S. Rusiecki, Physica C159, 681 (1989).ADSCrossRefGoogle Scholar
  72. 62.
    H. Monien and D. Pines, Phys. Rev. B 41, 6297 (1990).ADSCrossRefGoogle Scholar
  73. 63.
    T. Imai, T. Shimizu, H. Yasouka, Y. Ueda and K. Kosuge, J. Phys. Soc. Jpn 57, 2280 (1988).ADSCrossRefGoogle Scholar
  74. 64.
    Y. Kitaoka, K. Ishida, F. Fujiwara, T. Kondo, K. Asayama, M. Horvatic, Y. Berthier, P. Butaud, P. Segransan, C. Berthier, H. Katayama-Yoshida, Y. Okabe and T. Takahashi, “Strong Correlation and Superconductivity”, Eds. H. Fukuyama, S. Maekawa and A.P. Malozemoff, by Springer-Verlag Berlin, Heidelberg (1989) p. 262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. Kallio
    • 1
  • X. Xiong
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of OuluOulu 57Finland

Personalised recommendations