Test of Density Functional Approximation for an Atom in a Strong Magnetic Field

  • Shiwei Li
  • J. K. Percus
Part of the Condensed Matter Theories book series (COMT, volume 6)


The density functional formalism for the ground state of a Fermion fluid in a central potential is reviewed. Kohn and Sham’s procedure is replaced by an explicit evaluation of the kinetic energy density functional, which is carried out via a semiclassical approximation to the path integral representation of the appropriate Green’s function. This technique is generalized to an imposed uniform magnetic field, using a short time path integral approximation. The special case of an uncoupled harmonic atom in a magnetic field is solved exactly. Its energy and spatial extent are evaluated at low, medium, and high field strength, and compared with the density functional results. Several suggestions are made as to how the anisotrophy which is lost in the latter approach can be recovered.


Uniform Magnetic Field Classical Path Path Integral Representation Density Functional Approximation Density Functional Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. J. K. Percus, in “Simple Models of Equilibrium and Nonequilibrium Phenomena,” ed. J. L. Lebowitz (North-Holland, 1987).Google Scholar
  2. 2.
    See e.g. E. R. Davidson, “Reduced Density Matrices in Quantum Chemistry”, (Academic Press, 1976).Google Scholar
  3. 3.
    J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 116 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    J.K. Percus, Gordon Conference onLiquids (1963).Google Scholar
  5. 5.
    J. K. Percus, Int. J. Q. Chem. XIII, 89 (1978).CrossRefGoogle Scholar
  6. 6.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    See e.g. E. H. Lieb, Phys. Rev. Lett. 46, 457 (1981).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    D. C. Langreth and M. J. Mehl, Phys. Rev. B28, 1809 (1983).ADSGoogle Scholar
  9. 9.
    E. K. U. Gross, L. N. Oliviera, and W. Kohn, Phys. Rev. A 37, 2805 (1988).ADSGoogle Scholar
  10. 10.
    W. Yang, Phys. Rev. Lett. 59, 1569 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    C. Handler, J. Chem. Phys. 58, 1 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    R. A. Harris and L. R. Pratt, J. Chem. Phys. 82, 856 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals,” (McGraw-Hill, 1965).Google Scholar
  14. 14.
    R. A. Harris and J. A. Cina, J. Chem. Phys. 79, 1381 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    S. Li and J. K. Percus, Phys. Rev. A 41, 2344 (1990).ADSGoogle Scholar
  16. 16.
    See e.g. K. Huang, “Statistical Mechanics”, (Wiley, 1963).Google Scholar
  17. 17.
    See e.g. S. Li and J. K. Percus, J. Chem. Phys (1990); in press.Google Scholar
  18. 18.
    A. K. Dhara and S. K. Ghosh, Phys. Rev. A 41, 4653 (1990).ADSGoogle Scholar
  19. 19.
    See e.g. J. K. Pecus, Annals N. Y. Acad. Sci. vol. 491, 36 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Shiwei Li
    • 1
  • J. K. Percus
    • 1
  1. 1.Courant Institute of Mathematical Sciences and Physics DepartmentNew York UniversityNew YorkUSA

Personalised recommendations