Advertisement

Gene Expression during Development of Nitrogen-Fixing Root Nodules

  • Donald Grierson
  • Simon N. Covey
Part of the Tertiary Level Biology book series (TLB)

Abstract

One factor known to limit the growth of higher plants is the availability of nitrogen in the soil. Gaseous nitrogen comprises four-fifths of the Earth’s atmosphere, but the ability to utilize directly this essential component of many biological molecules is restricted to a few groups of prokaryotic organisms. Legume plant species have overcome this limitation to productivity by virtue of a highly organized association developed with nitrogen-fixing bacteria of the family Rhizobiaceae. These soil-borne organisms are stimulated to invade the roots of susceptible plants where they become intracellular ‘organelles’, called bacteroids, which convert atmospheric nitrogen to ammonia for assimilation by the plant. The plant develops specialized organs, the root nodules, to house the Rhizobium bacteroids and provides the appropriate environment and nutrients to support nitrogen fixation. In agronomic terms, the potential benefit of nitrogen-fixing organisms is enormous since it is estimated that they fix at least 2 x 108 tonnes of nitrogen per year.

Keywords

Nitrogen Fixation Root Hair Glutamine Synthetase Plant Molecular Biology Nodule Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, H., Preddie, E. and Verma, D.P.S. (1983) Nodulin-35: a subunit of specific uricase (uricase II) and induced and localized in the uninfected cells of soybean nodules. EMBO J. 2, 2333–2339.Google Scholar
  2. Bogusz, D., Appleby, C.A., Landsmann, J., Dennis, E.S., Trinick, M.J. and Peacock, W.J. (1988) Functioning haemoglobin genes in non-nodulating plants. Nature (London) 331, 178–180.CrossRefGoogle Scholar
  3. Bojsen, K., Abildsten, D., Jensen, E.O., Paludan, K. and Marcker, K.A. (1983) The chromosomal arrangement of six soybean leghaemoglobin genes. EMBO J. 2, 1165–1168.Google Scholar
  4. Brisson, N. and Verma, D.P.S. (1982) Soybean leghaemoglobin gene family: normal, pseudo and truncated genes. Proc. Natl. Acad. Sci. USA 79, 4055–4059.CrossRefGoogle Scholar
  5. Cullimore, J.V., Lara, M., Lea, P.J. and Miflin, B.J. (1983) Purification and properties of two forms of glutamine synthetase from the plant fraction of Phaseolus root nodules. Planta (Berlin) 157, 245–253.CrossRefGoogle Scholar
  6. Downie, J.A. and Johnston, A.W.B. (1986) Nodulation of legumes by Rhizobium: The recognized root? Cell 47, 153–154.CrossRefGoogle Scholar
  7. Downie, J.A., Hombrecher, G., Ma, Q.-S., Knight, C.D., Wells, B. and Johnston, A.W.B. (1983) Cloned nodulation genes of Rhizobium leguminosarum determine host range specificity. Mol. Gen. Genet. 190, 359–365.CrossRefGoogle Scholar
  8. Fuller, F., Kunster, P.W., Nguyen, T. and Verma, D.P.S. (1983) Soybean nodulin genes: analysis of cDNA clones reveals several major tissue-specific sequences in nitrogen-fixing root nodules. Proc. Natl. Acad. Sci. USA 80, 2594–2598.CrossRefGoogle Scholar
  9. Fortin, M.G. and Verma, D.P.S. (1987) Peri bacteroid membrane nodulins of soybean. In Molecular Genetics of Plant Microbe Interactions, eds. D.P.S. Verma and N. Brisson, Martinus Nijhoff, Dordrecht, 102–107.CrossRefGoogle Scholar
  10. Franssen, H.J., Nap, J-P., Gloudemans, T., Stiekema, W., van Dom, H., Govers, F., Louwerse, J., van Kammen, A. and Bisseling, T. (1987) Characterization of cDNA for nodulin-75 of soybean: A gene product involved in early stages of root nodule development. Proc. Natl. Acad. Sci. USA 84, 4495–4499.CrossRefGoogle Scholar
  11. Govers, F., Gloudemans, T., Moerman, M., van Kammen, A. and Bisseling, T. (1985) Expression of plant genes during the development of pea root nodules. EMBO J. 4, 861–867.Google Scholar
  12. Govers, F., Moerman, M., Downie, J.A., Hooykaas, P., Franssen, H.J., Louwerse, J., van Kammen, A. and Bisseling, T. (1986) Rhizobium nod genes are involved in inducing an early nodulin gene. Nature (London) 323,564–566.CrossRefGoogle Scholar
  13. Govers, F., Nap, P-J., Moerman, M., Franssen, H.J., van Kammen, A. and Bisseling, T. (1987) cDNA cloning and developmental expression of pea nodulin genes. Plant Mol. Biol. 8, 425–435.CrossRefGoogle Scholar
  14. Hirel, B., Bouet, C., King, B., Layzell, D., Jacob, F. and Verma, D.P.S. (1987) Glutamine synthetase genes are regulated by ammonia provided externally or by symbiotic nitrogen fixation. EMBO J. 6, 1167–1171.Google Scholar
  15. Hirsch, P.R., van Montagu, M., Johnston, A.W.B., Brewin, N. and Schell, J. (1980) Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarum. J. Gen. Microbiol. 120, 403–412.Google Scholar
  16. Hontelez, J., Lankhorst, L.K., Jansma, J-D., Jacobson, E., van den Bos, R.C. and van Kammen, A. (1987) Characterization of symbiotic genes and their expression in Rhizobium leguminosarum PRE. In Molecular Genetics of Plant-Microbe Interactions, eds. D.P.S. Verma and N. Brisson, Martinus Nijhoff, Dordrecht, 241–243.CrossRefGoogle Scholar
  17. Horvath, B., Bachem, C.W.B., Schell, J. and Kondorosi, A. (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal interacting with the nod D gene product. EMBO J. 6, 841–848.Google Scholar
  18. Hyldig-Nielsen, J.J., Jensen, E.O., Paludan, K., Wiborg, O., Garrett, R., Jorgensen, P. and Marcker, K.A. (1982) The primary structure of two leghaemoglobin genes from soybean. Nucleic Acids Res. 10, 689–701.CrossRefGoogle Scholar
  19. Johnston, A.B.W., Beynon, J.L., Buchanan-Wollaston, A.V., Setchell, S.M., Hirsch, P.R. and Beringer, J.E. (1978) High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature (London) 276, 634–636.CrossRefGoogle Scholar
  20. Lee, J.S., Brown, G.G. and Verma, D.P.S. (1983) Chromosomal arrangement of leghaemoglobin genes in soybean. Nucleic Acids Res. 11, 5541–5553.CrossRefGoogle Scholar
  21. Mauro, V.P., Nguyen, T., Katinakis, P. and Verma, D.P.S. (1985) Primary structure of the soybean nodulin-23 gene and potential regulatory elements in the 5’-flanking regions of nodulin and leghaemoglobin genes. Nucleic Acids Res. 13, 239–249.CrossRefGoogle Scholar
  22. Nuti, M.P., Ledeboer, A.M., Lepidi, A.A. and Schilperoort, R.A. (1977) Large plasmid in different Rhizobium species. J. Gen. Microbol. 100, 241–248.Google Scholar
  23. Nuti, M.P., Lepidi, A.A., Prakash, R.K., Hooykaas, P.J.J. and Schilperoort, R.A. (1982) The plasmids of Rhizobium and symbiotic nitrogen fixation. In Molecular Biology of Plant Tumours, eds. G. Khal and J. Schell, Academic Press, New York, 561–588.Google Scholar
  24. Nguyen, T., Zelechowska, M., Foster, V., Bergmann, H. and Verma, D.P.S. (1985) Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc. Natl. Acad. Sci. USA 82, 5040–5044.CrossRefGoogle Scholar
  25. Rossen, L., Davis, E.O. and Johnston, A.W.B. (1987) Plant-induced Rhizobium genes involved in host specificity and early stages of nodulation. Trends Biochem. Sci. 12, 430–433.CrossRefGoogle Scholar
  26. Spaink, H.P, Wijffelman, C.A., Press, E., Okker, R.J.H. and Lugtenberg, B.J.J. (1987) Rhizobium nodulation gene nod D as a determinant of host specificity. Nature (London) 328, 337–340.CrossRefGoogle Scholar
  27. Sprent, J.I. (1986) Benefits of Rhizobium to agriculture. Trends Biotech. 4, 124–129.CrossRefGoogle Scholar
  28. Stougaard, J., Marcker, K.A., Otten, L. and Schell, J. (1986) Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature (London) 321, 669–674.CrossRefGoogle Scholar
  29. 29.
    Stougaard, J., Sandal, N.N., GrØn, A., Kuhle, A. and Marcker, K.A. (1987) 5’ Analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J. 6, 3565–3569.Google Scholar
  30. Tingey, S.V, Walker, E.L. and Coruzzi, G.M. (1987) Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J. 6, 1–9.Google Scholar
  31. Vance, C.P. (1983) Rhizobium infection and nodulation: a beneficial plant disease? Ann. Rev. Microbial. 37, 399–424.CrossRefGoogle Scholar
  32. Verma, D.P.S., Nash, D.T. and Schulman, H.M. (1974) Isolation and in-vitro translation of soybean leghaemoglobin mRNA. Nature (London) 251, 74–77.CrossRefGoogle Scholar
  33. Vincent, J.M. (1980) Factors controlling the legume-Rhizobium symbosis. In Nitrogen Fixation II, eds. W.E. Newton and W.H. Onne-Johnson, University Park Press, Baltimore, 103–129.Google Scholar
  34. Wiborg, O. Hyldig-Nielsen, J.J., Jensen, E.O. Paludan, K. and Marcker, K.A. (1983) The structure of an unusualleghaemoglobin gene from soybean. EMBO J. 2, 449–452.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Donald Grierson
    • 1
  • Simon N. Covey
    • 2
  1. 1.Department of Physiology and Environmental ScienceUniversity of NottinghamUK
  2. 2.John Innes Institute, AFRC Institute of Plant Science ResearchNorwichUK

Personalised recommendations