Skip to main content

Liquid-Phase Electroepitaxy

  • Chapter
Growth of Crystals

Part of the book series: Growth of Crystals ((GROC,volume 16))

  • 209 Accesses

Abstract

This article discusses a comparatively new method for preparation of epitaxial layers, liquid-phase electroepitaxy (LEE). This method is based on crystallization under the influence of current which is passed through saturated or nearly saturated solutions of the crystallized substance. In contrast to processes of electro-crystallization, where the crystallizing substance is the product of an electrode reaction, crystallization in processes which are used in LEE is a secondary effect which results from changes of temperature and concentration of the crystallizing substance as a result of the passage of current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V., Golubev, T. V., Pakhomova, O. A., Khachaturyan, and Yu. V. Shmartsev, “Liquid epitaxy in an electric field,” in: IVth All-Union Conf. on Crystal Growth [in Russian], Izd. Akad. Nauk Arm. SSR, Erevan (1972), pp. 164–167.

    Google Scholar 

  2. M., Kumagawa, A. F., Witt, M. Lichtensteiger, and H. C. Gatos, “Current-controlled growth and dopant modulation in liquid-phase epitaxy,” J. Electrochem. Soc., 120, No.4, 583–584 (1973).

    Article  CAS  Google Scholar 

  3. A. F., Ioffe, “Two new applications of the Peltier effect,” Zh. Tekh. Fiz., 26, No.2, 478–483 (1956).

    CAS  Google Scholar 

  4. W. G., Pfann, K. E., Benson, and J. H., Wemik, “Some aspects of Peltier heating at liquid-solid interfaces in germanium,” J. Electron., 2, 597–608 (1957).

    Article  CAS  Google Scholar 

  5. J., Angus, D. V., Radone, and E. E., Hucke, “The effect of an electric field on the segregation of solute atoms at a freezing interface,” Met. Soc. Conf., 8, 833–840 (1961).

    CAS  Google Scholar 

  6. W. A., Tiller, “Migration of a liquid zone through a solid: Pt. 2,” J. Appl Phys., 34, No.9, 2763–2767 (1963).

    Article  CAS  Google Scholar 

  7. D. T., Hurle, J. B. Mullin, and E. R. Pike, “The motion of liquid alloy zones along a bar under the influence of an electric current,” Philos. Mag., 9, No.97, 423–434 (1964).

    Article  Google Scholar 

  8. E. Yu., Kokorish, “Influence of the Peltier effect on the perfection of single crystal germanium prepared by extrusion from a melt,” Kristallografiya, 5, 815–816 (1960).

    CAS  Google Scholar 

  9. V. A., Mikhailov, M. V., Komievich, and V. N., Vertoprakhov, “Crystallization of bismuth and tin from a melt in liquid gallium in an electric field,” Fiz. Met. Metalloved., 28, No.1, 180–183 (1969).

    CAS  Google Scholar 

  10. W. G., Pfann and R. S. Wagner, “Principles of field freezing,” Trans. Metall Soc. AIME, 224, No.6, 1139–1146 (1962).

    CAS  Google Scholar 

  11. M. Lichtensteiger, A. F. Wiu, and H. C. Gatos, “Modulation of dopant segregation by electric currents in Czochralski-type crystal growth,” J. Electrochem. Soc., 118, No.3, 1013–1015 (1971).

    Article  CAS  Google Scholar 

  12. A. F., Witt, M. Lichtensteiger, and H. C. Gatos, “Application of interface demarcation to the study of facet growth and segregation. Germanium,” J. Electrochem. Soc., 121, No.6, 887–890 (1974).

    Article  Google Scholar 

  13. J. R., O’Connor, “The use of thermoelectric effects during crystal growth,” J. Electrochem. Soc., 108, No.7, 713–715 (1961).

    Article  Google Scholar 

  14. J. R., O’Connor, “Peltier coefficient at a solid-liquid interface,” J. Appl. Phys., 31, No.9, 1690–1691 (1960).

    Article  Google Scholar 

  15. D. I., Levinzon, V. B. Zakutnyi, and V. A. Shershel’, “Improvement of growth processes of germanium single crystals through use of Joule and Peltier effects,” in: Silicon and Gennanium [in Russian], Metallurgiya, Moscow (1969), pp. 80–84.

    Google Scholar 

  16. V. A., Gevorkyan, L. V. Golubev, S. G. Petrosyan, et al., “Electrical liquid epitaxy. I,” Zh. Tekh. Fiz., 47, No.6, 1306–1313 (1977).

    CAS  Google Scholar 

  17. L. Jastrzebski, J. Lagowski, H. C. Gatos, and A. F., Witt, “Liquid-phase electroepitaxy: growth kinetics,” J Appl Phys., 49, No.12, 5909–5920 (1978).

    Article  CAS  Google Scholar 

  18. Ya. M. Buzhdyan, F. A. Kuznetsov, and L. N. Belyaeva, “Toward analysis and optimization of the liquid-phase electroepitaxy process,” in: Growth of Semiconducting Crystals and Films [in Russian], Nauka, Novosibirsk (1981), pp. 52–67.

    Google Scholar 

  19. A. N. Barchuk and A. I. Ivashchenko, “On the role of the Joule effect in liquid-phase electroepitaxy,” Zh. Tekh. Fiz., 52, No.9, 1878–1882 (1982).

    CAS  Google Scholar 

  20. V. A. Govorkyan, L. V. Golubev, A. E. Khachaturyan, and Yu. V. Shmartsev, “On the question of growth kinetics in equilibrium liquid-phase electroepitaxy,” Zh. Tekh. Fiz., 53, No.3, 545–549 (1983).

    Google Scholar 

  21. S. A. Nikishin, “Toward an analysis of mass transfer during liquid-phase electroepitaxy of gallium arsenide,” Zh. Tekh. Fiz., 53, No.3, 538–544 (1983).

    CAS  Google Scholar 

  22. F. A., Kuznetsov, V. N., Demin, and Ya. M., Buzhdyan, “Liquid-phase electroepitaxy, a new method for growth of epitaxiallayers,” in: Materials of Electronics Technology [in Russian], Nauka, Novosibirsk (1983), Part 1, pp. 45–62.

    Google Scholar 

  23. S. G., Mil’vidskii, S. A., Nikishin, and R. P., Seisyan, “Features of mass transfer during liquid-phase electroepitaxy of gallium arsenide,” Kristallografiya, 27, No.4, 742–750 (1982).

    CAS  Google Scholar 

  24. J. J., Daniele, “Experiments showing the absence of electromigration of As and Al in Peltier LPE of GaAs and Ga1-xAlxAs,” J Electrochem. Soc., 124, No.7, 1143–1144 (1977).

    Article  CAS  Google Scholar 

  25. V. N., Demin, Ya. M., Buzhdyan, and F. A., Kuznetsov, “On the role of electron transfer in liquid-phase electroepitaxy,” Zh. Tekh. Fiz., 48, No.7, 1442–1445 (1978).

    CAS  Google Scholar 

  26. V. N., Demin, Yu. M., Rumyantsev, F. A., Kuznetsov, and Ya. M., Buzhdyan, “Crystallization of gallium arsenide from its solution in a melt under the influence of an electric current,” in: Growth of Semiconducting Crystals and Films [in Russian], Nauka, Novosibirsk (1981), pp. 67–73.

    Google Scholar 

  27. V. N., Demin and F. A., Kuznetsov, “On the applicability of diffusional approximation in models of LEE processes,” Zh. Tekh. Fiz., 54, No.5, 934–937 (1984).

    CAS  Google Scholar 

  28. L., Jastrzebski and H. C,. Gatos, “Current-controlled growth, segregration, and amphoteric behavior of Si in GaAs from Si-doped solutions,” in: Proc. Vth Conf. Cryst. Growth, IGGG-5, Boston (1977), pp. 17–22.

    Google Scholar 

  29. J., Lagowski, I., Jastrzebski, and H., C. Gatos, “Liquid-phase electroepitaxy: dopant segregation,” J Appl Phys., 51, No.1, 364–373 (1980).

    Article  CAS  Google Scholar 

  30. A. N., Barchuk and A. I., Ivashchenko, “Numerical analysis of dopant segregation in liquid-phase epitaxy,” Élektron. Tekh., Ser Mater., No.12, 44–48 (1981).

    Google Scholar 

  31. K. M., Gambaryan, V. A., Govorkyan, L. V,. Golubev, S. V., Novikov, and YU. V., Shmartsev, “Analysis of dopant distribution during equilibrium liquid-phase electroepitaxy,” Zh. Tekh. Fiz., 54, No.10, 2011–2012 (1984).

    CAS  Google Scholar 

  32. V. A., Mikhailov and D. D., Bogdanova, Electron Transfer in Liquid Metals [in Russian], Nauka, Novosibirsk (1978).

    Google Scholar 

  33. V. N., Demin and F. A., Kuznetsov, “Control of doping epitaxial layers in liquid-phase electroepitaxy,” in: Papers of the VIth Int. Conf. on Crystal Growth [in Russian], Nauka, Moscow (1980), Vol. 3, pp. 376–377.

    Google Scholar 

  34. J., Grossley and M. B., Small, “Some observations of the surface morphologies of GaAs layers grown by liquid-phase epitaxy,” J Cryst Growth, 19, 160–165 (1973).

    Article  Google Scholar 

  35. S. A., Nikishin, “New solutions and applications of liquid-phase electroepitaxy. 1,” Zh. Tekh. Fiz., 54, No.5, 938–942 (1984).

    CAS  Google Scholar 

  36. V. N., Demin, L. N., Krasnoperov, and F. A., Kuznetsov, “On the possible application of alternating current in liquid-phase electroepitaxy,” Zh. Tekh. Fiz., 55, No.11, 2179–2183 (1985).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Kuznetsov, F.A., Demin, V.N. (1991). Liquid-Phase Electroepitaxy. In: Bagdasarov, K.S., Lube, É.L. (eds) Growth of Crystals. Growth of Crystals, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3662-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3662-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-18116-0

  • Online ISBN: 978-1-4615-3662-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics