Advertisement

Decomposition of a Solid Solution on the Surface of Lithium Niobate Crystals: Structure, Morphology, and Mutual Orientation of Phases

  • S. A. Semiletov
  • N. G. Bocharova
  • E. V. Rakova
Part of the Growth of Crystals book series (GROC, volume 17)

Abstract

Lithium niobate is a colorless transparent crystal belonging to the trigonal system [1]. Congruent LiNbO3 crystals are grown from the melt by the Czochralski method. The composition of the most perfect of these, most frequently used in technology, is not stoichiometric relative to the molar concentrations of lithium and niobium. A lithium deficit in the amount of ~1.4 mole % occurs in them [2]. The chemical formula of the crystals is more accurately written as Li0.945NbO3 (deviation of the composition from stoichiometric in oxygen is unknown and is taken as zero). This peculiarity, as well as the dependence of the width of the region of homogeneity for the solid solutions based on lithium niobate as a function of temperature (Fig. 1), leads to identification of a second monoclinic phase LiNb3O8 upon cooling grown crystals below the limit of the monophasic region or during their heat treatment [3, 4]. Decomposition of supersaturated solid solutions is studied in detail for metallic alloys [5, 6] and much less for crystals of complicated compounds.

Keywords

Symmetry Plane Lithium Niobate Monoclinic Phase Mutual Orientation Supersaturated Solid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. S. Kuz’minov, Lithium Niobate and Tantalate. Materials for Nonlinear Optics [in Russian], Nauka, Moscow (1975).Google Scholar
  2. 2.
    J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl Phys., 42, No. 5, 1846–1851 (1971).CrossRefGoogle Scholar
  3. 3.
    L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, “Solid-solution range of LiNb03,”J. CrysL Growth, 22, No. 3, 230–232 (1974).CrossRefGoogle Scholar
  4. 4.
    M. N. Armenise, C. Canali, M. de Sario, et al., “Characterization of TiO2 LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication,” J. AppL Phys., 54, No. 11, 6223–6231 (1983).Google Scholar
  5. 5.
    Ya. S. Umanskii, B. N. Finkel’shtein, and M. E. Blanter, Physical Principles of Metal Science [in Russian], Metallurgizdat, Moscow (1949).Google Scholar
  6. 6.
    B. Ya. Lyubov, Theory of Crystallization in Large Volumes [in Russian], Nauka, Moscow (1975).Google Scholar
  7. 7.
    Z. G. Pinsker, Electron Diffraction [in Russian], Izd. Akad. Nauk SSSR, Moscow (1949).Google Scholar
  8. 8.
    V. A. Yakovlev, “Ellipsometric monitoring of the surface state of anisotropic crystals,” in: Optics of Anisotropic Media [in Russian], Mosk. Fiz. Tekh. Inst., Moscow (1985), pp. 27–28.Google Scholar
  9. 9.
    G. M. Zverev, S. A. Kolyadin, E. A. Levchuk, and L. A. Skvortsov, “Effect of the surface layer on the resistance of lithium niobate to laser radiation,” Kvantovaya Élektron. (Moscow), 4, No. 9, 1882–1889 (1977).Google Scholar
  10. 10.
    B. K. Vainshtein, Structural Electron Diffraction [in Russian], Izd. Akad. Nauk SSSR, Moscow (1956).Google Scholar
  11. 11.
    M. Lundberg, “The crystal structure of LiNb3O8,” Acta Chem Scand, 25, No. 9, 3337–3346 (1971).CrossRefGoogle Scholar
  12. 12.
    A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, et aL, Modern Crystallography: Crystal Formation, Vol. 3 [in Russian], Nauka, Moscow (1982).Google Scholar
  13. 13.
    S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal x-ray diffraction study at 24°C,” J. Phys. Chem Solids, 27, No. 6/7, 997–1012 (1966).CrossRefGoogle Scholar
  14. 14.
    L. S. Palatnik and I. I. Papirov, Epitaxial Films [in Russian], Nauka, Moscow (1971).Google Scholar
  15. 15.
    G. V. Chaplygin, “Mutual orientation during heteroepitaxy,” in: Abstracts of Papers of the Vlth IntL Conf. on Crystal Growth, VoL 1 [in Russian], Inst. Kristallogr. Akad. Nauk SSSR, Moscow (1980), pp. 135–136.Google Scholar
  16. 16.
    A. V. Kuznetsov, S. A. Semiletov, and G. V. Chaplygin, “Orientation of gallium nitride on sapphire,” in: Growth of Crystals, Vol. 15, A. A. Chernov, ed., Consultants Bureau, New York (1988), pp. 14–24.Google Scholar

Copyright information

© Consultants Bureau, New York 1991

Authors and Affiliations

  • S. A. Semiletov
  • N. G. Bocharova
  • E. V. Rakova

There are no affiliations available

Personalised recommendations