Skip to main content

Abstract

As soon as a semiconductor is brought into contact with a gaseous medium, its surface begins to be covered by the molecules of the gas, i.e., adsorption has set in. The process ceases when an equilibrium between the surface and the gaseous phase is established, Le., when the number of molecules passing from the gaseous phase to the surface per unit time is equal (on the average) to the number of molecules leaving the surface for the gas over the same interval. The presence of the molecules adsorbed by the semiconductor surface changes the properties of the latter. Thus, adsorption is the agent by which the ambient acts on the surface and, indirectly, on some of the bulk properties of the semiconductor .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Langmuir, J. Am. Chem. Soc., 38, 2217 (1916).

    Article  Google Scholar 

  2. S. Z. Roginskii (Roginsky) and Ya. B. Zel’dovich (Zeldovitch), Acta Physicochim. URSS, 1,554,595 (1934).

    Google Scholar 

  3. H. S. Taylor and N. Thon, J. Am. Chem. Soc., 74, 4169 (1952).

    Article  CAS  Google Scholar 

  4. F. S. Stone, in: Chemistry of the Solid State, ed. by W. E. Garner, Butterworths, London (1955), p. 367.

    Google Scholar 

  5. J. M. Thuillier, Ann. Phys. (Paris), 5,865 (1960).

    Google Scholar 

  6. R. Schuttler and J. M. Thuillier, C. R. Acad. Sci., 355, 877 (1962).

    Google Scholar 

  7. D. H. Bangham and F. P. Burt, Proc. R. Soc. London, Ser A, 105, 481 (1924); D. H. Bangham and W. Sever, Philos. Mag., 49, 938 (1928).

    Article  CAS  Google Scholar 

  8. H. Freundlich, Kapillarchemie, Academische Verlag, Leipzig (1922).

    Google Scholar 

  9. A. N. Frumkin and M. Shlygin, Acta Physicochim. URSS, 3, 791 (1935).

    Google Scholar 

  10. F. V. Lenel, Z. Phys. Chem., (Leipzig) B23, 379 (1933).

    Google Scholar 

  11. W. J. C. Orr, Trans.Faraday Soc., 35, 1247 (1939).

    Article  CAS  Google Scholar 

  12. J. E. Lennard-Jones, Trans. Faraday Soc., 28,333 (1932).

    Article  CAS  Google Scholar 

  13. Th. Wolkenstein, Zh. Fiz. Khim., 23, 917 (1949); Probi. Kinet. Katal., 7,360 (1949).

    Google Scholar 

  14. Th. Wolkenstein, Zh. Fiz. Khim, 27, 159, 167 (1958); Usp. Fiz. Nauk., 50, 253 (1953).

    Google Scholar 

  15. Th. Wolkenstein, Zh. Fiz. Khim., 21 163 (1947).

    Google Scholar 

  16. Th. Wolkenstein, Zh. Fiz. Khim., 22,311 (1948).

    Google Scholar 

  17. Th. Wolkenstein, Zh. Fiz. Khim., 26, 1462 (1952).

    Google Scholar 

  18. Th. Wolkenstein, Zh. Fiz. Khim., 28, 422 (1954).

    Google Scholar 

  19. Th. Wolkenstein and S. Z. Roginskii, Zh. Fiz. Khim., 29, 485 (1955).

    Google Scholar 

  20. Th. Wolkenstein, Usp. Fiz. Nauk, 60, 249 (1956).

    Google Scholar 

  21. Th. Wolkenstein, Zh. Fiz. Khim., 21, 1317 (1947).

    Google Scholar 

  22. V. L. Bonch-Bruevich, Zh. Fiz. Khim., 25, 1033 (1951).

    CAS  Google Scholar 

  23. Th. Wolkenstein, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 8, 916 (1957); J. Chim. Phys., 54, 175 (1957).

    Google Scholar 

  24. T. B. Grimley, Proc. Phys. Soc., London, 72, 103 (1958).

    Article  CAS  Google Scholar 

  25. J. Koutecky, Proc. Phys. Soc., London, 73,323 (1959).

    Article  CAS  Google Scholar 

  26. É. L. Nagaev, in: Scientific Conference of Junior Scientists [in Russian], Moscow University Press, Moscow (1959), p. 18.

    Google Scholar 

  27. Th. Wolkenstein, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk, No.2, 147 (1957).

    Google Scholar 

  28. Th. Wolkenstein, Probi. Kinet. Katal., 8, 79 (1955).

    Google Scholar 

  29. Th. Wolkenstein, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk, No. 8, 924 (1957); J. Chim. Phys., 54, 181(1957).

    Google Scholar 

  30. Th. Wolkenstein and V. L. Bonch-Bruevich, Zh. Eksp. Teor. Fiz., 20, 624 (1950).

    Google Scholar 

  31. Th. Wolkenstein, Zh. Eksp. Teor. Fiz., 22, 184 (1952).

    Google Scholar 

  32. Th. Wolkenstein, Usp. Khim., 27, 1304 (1958); Chem. Tech., 11, 8, 103 (1959).

    Google Scholar 

  33. V. L. Bonch-Bruevich and V. B. Glasko, Vestn. Mosk. Gos. Univ., No. 5, 91 (1958); Dokl. Akad. Nauk SSSR, 124,1015 (1959).

    Google Scholar 

  34. Th. Wolkenstein, Kinet. Katal., 19, 90 (1978).

    Google Scholar 

  35. J. C. Slater, Phys. Rev., 38, 1109 (1931).

    Article  CAS  Google Scholar 

  36. A. A. Balandin, The Current State of the Multiplet Theory of Heterogeneous Catalysis [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  37. S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York (1977).

    Google Scholar 

  38. K. H. Johnson and R. P. Messmer, J. Vac. Sci. Technoi., 11, 235 (1974).

    Google Scholar 

  39. A. P. Zeif, in: Elementary Physicochemical Processes at the Surfaces of Single Crystal Semiconductors [in Russian), Nauka, Novosibirsk (1975).

    Google Scholar 

  40. G. M. Zhidomirov, Kinet. Katal., 18, 1192 (1977).

    CAS  Google Scholar 

  41. R. P. Messmer, in: Semiempirical Methods of Electronic Structure Calculation, Part B: Applications (G. A. Segal, ed.), Plenum Press, New York (1977).

    Google Scholar 

  42. G. V. Gadiyak, A. A. Karpushin, and Yu. N. Morokov, in: The Problems of the Physical Chemistry of Semiconductor Surfaces [in Russian), Nauka, Novosibirsk (1978), p. 72.

    Google Scholar 

  43. H. Dunken and V. Lygin, Quantenchemie der Adsorption an Festkörperoberflächen, Deutscher Verlag, Leipzig (1978).

    Google Scholar 

  44. A. W. Goddard, and T. C. McGill, J. Vac. Sci. Technoi., 16, 1308 (1979).

    Article  CAS  Google Scholar 

  45. C. W. Bauschlichter, P. S. Bagus, and H. F. Schaefer, IBM J. Res. Dev., 22, 213 (1978).

    Article  Google Scholar 

  46. C. Pisani and F. Ricca, Surf Sci., 92, 481 (1980).

    Article  CAS  Google Scholar 

  47. I. D. Mikheikin, I. A. Abronin, G. M. Zhidomirov, and V. B. Kazanskii (Kazansky), J. Mol. Catal., 3, 435 (1977/78).

    Google Scholar 

  48. I. D. Mikheikin, I. A. Abronin, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal., 18, 1580 (1977).

    CAS  Google Scholar 

  49. I. D. Mikheikin, A. I. Lumpov, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal., 19, 1053 (1978).

    CAS  Google Scholar 

  50. I. D. Mikheikin, A. I. Lumpov, and G. M. Zhidomirov, Kinet Katal., 20, 501 (1979).

    CAS  Google Scholar 

  51. A. G. Pel’menshchikov, I. N. Senchenya, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal., 24, 233 (1983).

    CAS  Google Scholar 

  52. V. A. Korsunov, N. D. Chuvylkin, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal., 19, 1152 (1978).

    CAS  Google Scholar 

  53. V. A. Korsunov, N. D. Chuvylkin, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal., 21, 402 (1980).

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Consultants Bureau, New York

About this chapter

Cite this chapter

Wolkenstein, T. (1991). The Various Types of Adsorption. In: Electronic Processes on Semiconductor Surfaces during Chemisorption. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3656-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3656-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-11029-0

  • Online ISBN: 978-1-4615-3656-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics