The Axolotl Ambystoma mexicanum

  • N. P. Bordzilovskaya
  • T. A. Dettlaff


The axolotl is one of the classical subjects of developmental biology. Its advantages are the ease of keeping breeding stock in the laboratory, long season of reproduction, rapid sexual maturation, and the relatively large size of the eggs and their resistance to various experimental influences. In addition, the adult animals have a high ability of regeneration.


Neural Plate Late Gastrula Ambystoma Mexicanum Hyoid Arch Gill Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Armstrong and M. F. Ortiz, “Alkylation treatment of the Mexican axolotl: An approach to the isolation of new mutants,” Am. Zool. 18, 359–368 (1978).Google Scholar
  2. 2.
    F. S. Billett and A. E. Wild, Practical Studies of Animal Development, Chapman and Hall, London (1975).Google Scholar
  3. 3.
    N. P. Bordzilovskaya and T. A. Dettlaff, “Table of stages of the normal development of axolotl embryos,” Axolotl Newsletter 7, 2–22 (1979).Google Scholar
  4. 4.
    E. C. Boterenhood, The Mexican Axolotl. UFAW Handbook on the Care and Management of Laboratory Animals, 3rd edn., Edinburgh & Livingstone, Ltd., London (1967).Google Scholar
  5. 5.
    J. Brachet, “Le contrôle de la maturation chez les oocytes d’Amphibiens,” Ann. Biol. 13, 403–434 (1974).Google Scholar
  6. 6.
    R. Briggs, “Genetic control of early embryonic development in the Mexican axolotl Ambystoma mexicanum,” Ann. Embryol. Morphogen., Suppl. 1, 105–113 (1969).Google Scholar
  7. 7.
    R. Briggs, “Developmental genetics of the axolotl,” in Genetic Mechanisms of Development, F. H. Ruddle, ed., Academic Press, New York (1973), p. 169.Google Scholar
  8. 8.
    R. Briggs and J. Cassens, “Accumulation in the oocyte nucleus of a gene product essential for embryonic development beyond gastrulation,” Proc. Natl. Acad. Sci. USA 55, 1103–1109 (1966).Google Scholar
  9. 9.
    R. Briggs and R. R. Humphrey, “Studies on the material effect of the semilethal gene, v, in the Mexican axolotl,” Dev. Biol. 5, 127–146 (1962).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Briggs and J. T. Justus, “Partial characterization of the component from normal eggs which corrects the maternal effect of gene 0 in the Mexican axolotl (Ambystoma mexicanum),” J. Exp. Zool. 147, 105–116 (1968).CrossRefGoogle Scholar
  11. 11.
    R. Briggs, J. Signoret, and R. R. Humphrey, “Transplantation of nuclei of various cell types from neurulae of the Mexican axolotl (Ambystoma mexicanum),” Dev. Biol. 10, 233–246 (1969).CrossRefGoogle Scholar
  12. 12.
    A. I. Brothers, “Instructions for the care and feeding of axolotl,” Axolotl Newsletter 3, 9–17 (1977).Google Scholar
  13. 13.
    R. B. Brun, “Experimental analysis of the eyeless mutant in Mexican axolotl (Ambystoma mexicanum),” Am. Zool. 18, 273–280 (1978).Google Scholar
  14. 14.
    U. V. Brunst, “The axolotl (Siredon mexicanum) as material for scientific research,” Lab. Invest. 4, 45–64 (1955).PubMedGoogle Scholar
  15. 15.
    B. M. Carlson, “Morphogenesis of the regenerating limb,” Ontogenez 13, 339–359 (1982).Google Scholar
  16. 16.
    G. ten Cate, “The intrinsic embryonic development,” Verhandel. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 51, 257 (1956).Google Scholar
  17. 17.
    T. A. Dettlaff, “Cell divisions, duration of interkinetic states, and differentiation in early stages of embryonic development,” in Advances in Morphogenesis, Vol. 3, Academic Press, New York (1964), pp. 323–362.Google Scholar
  18. 18.
    T. A. Dettlaff and A. A. Dettlaff, “On relative dimensionless characteristics of the development duration in embryology,” Arch. Biol. (Liége) 72, 1–16 (1961).Google Scholar
  19. 19.
    E. M. Deuchar, “Famous animals. 8. The axolotl,” New Biol. 23, 102–122 (1957).Google Scholar
  20. 20.
    E. Elkan, “Pathology in the Amphibia,” in Physiology of the Amphibia, Vol. 3, B. Lofts, ed., Academic Press, New York (1976), pp. 273–312.Google Scholar
  21. 21.
    H. Engländer, “Die Induktionsleistungen eines heterogenen Induktors in Abhängigkeit von der Dauer seiner Einwirkungszeit,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 154, 124–142 (1962a).CrossRefGoogle Scholar
  22. 22.
    H. Engländer, “Die Differenzierungsleistungen des Triturus-und Ambystoma-tkxodtvms unter der Einwirkung von Knochenmark,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 154, 143–159 (1962b).CrossRefGoogle Scholar
  23. 23.
    H. Engländer and A. G. Johnen, “Die morphogenetische Wirkung von Li-Ionen auf Gastrula-Ektoderm von Ambystoma und Triturus,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 159, 346–356 (1967).Google Scholar
  24. 24.
    L. G. Epp, “A review of the eyeless mutant in the Mexican axolotl,” Am. Zool. 18, 267–272 (1978).Google Scholar
  25. 25.
    G. Fankhauser, “Amphibia,” in Animals for Research, W. Lane-Petter, ed., Academic Press, London (1963).Google Scholar
  26. 26.
    G. Fankhauser, “Urodeles,” in Methods of Developmental Biology, F. H. Wilt and N. K. Wessels, eds., Tome’s Crowel, New York (1967), pp. 85–99.Google Scholar
  27. 27.
    R. V. Fremery, “Diseases of axolotl in the amphibian colony of the Hubrecht Laboratory, Utrecht, The Netherlands, in the period 1974-1980,” Axolotl Newsletter 9, 7–8 (1980).Google Scholar
  28. 28.
    A. S. Ginsburg, “Transplantation of the ear ectoderm in axolotl,” C. R. Acad. Sci. USSR 30, 546–549 (1941).Google Scholar
  29. 29.
    A. S. Ginsburg, “On the determination of the labyrinth in axolotl and triton,” Izv. Akad. Nauk SSSR, Ser. Biol. 3, 215–228 (1942).Google Scholar
  30. 30.
    A. S. Ginsburg, “Changes in the properties of the ear material in the process of determination,” C. R. Acad. Sci. USSR 54, 185–188 (1946).Google Scholar
  31. 31.
    A. S. Ginsburg, “Cortical reaction in axolotl eggs,” Sov. J. Dev. Biol. 2, 515–518 (1972).Google Scholar
  32. 32.
    L. Goetters, “Differenzierungsleistungen von explantiertem Urodelenectoderm (Ambystoma mexicanum Cope und Triturus alpestris Laur) nach verschieden langer Unterlagerungszeit,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 157, 75–100 (1966).Google Scholar
  33. 33.
    S. Grinfeld and J. C. Beetschen, “Early grey crescent formation experimentally induced by cycloheximide in the axolotl oocyte,” Wilhelm Roux’s Arch. Dev. Biol. 191, 215–221 (1982).CrossRefGoogle Scholar
  34. 34.
    H. Grunz, “Experimentelle Untersuchungen über die Kompetenzverhaltnisse früher Entwicklungsstadien des Amphibien-Ektoderm,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 160, 344–374 (1968).CrossRefGoogle Scholar
  35. 35.
    V. Hamburger, A Manual of Experimental Embryology, University of Chicago Press, Chicago (1947).Google Scholar
  36. 36.
    K. Hara, “The cleavage pattern of the axolotl egg studied by cinematography and cell counting,” Wilhelm Roux’s Arch. Dev. Biol. 181, 73–87 (1977).CrossRefGoogle Scholar
  37. 37.
    K. Hara and E. C Boterenbrood, “Refinement of Harrison’s normal table for the morula and blastula of axolotl,” Wilhelm Roux’s Arch. Dev. Biol. 181, 89–93 (1977).CrossRefGoogle Scholar
  38. 38.
    R. G. Harrison, Organization and Development of the Embryo, Yale University Press, New Haven (1969).Google Scholar
  39. 39.
    T. S. Hauschka and V. V. Brunst, “Sexual dimorphism in the nucleolar autosome of the axolotl (Siredon mexicanum),” Hereditas 52, 345 (1965).PubMedCrossRefGoogle Scholar
  40. 40.
    R. R. Humphrey, “A linked gene determining the lethality usually accompanying a hereditary fluid imbalance in the Mexican axolod,” J. Hered. 50, 279–286 (1959).Google Scholar
  41. 41.
    R. R. Humphrey, “A chromosomal deletion in the Mexican axolod (Siredon mexicanum) involving the nucleolar organizer and the gene for dark color,” Am. Zool. 1, Abstract 222 (1961).Google Scholar
  42. 42.
    R. R. Humphrey, “Mexican axolods, dark and white mutant strains: care of experimental animals,” Bull. Philadelphia Herpetol. Soc, April-Sept., 21 (cited by New, 1966).Google Scholar
  43. 43.
    R. R. Humphrey, “A recessive factor (o for ova-deficient) determining a complex of abnormalities in the Mexican axolod (Ambystoma mexicanum),” Dev. Biol. 13, 57–76 (1966).PubMedCrossRefGoogle Scholar
  44. 44.
    R. R. Humphrey, “Albino axolods from an albino tiger salamander through hybridization,” J. Hered. 58, 95–101 (1967).PubMedGoogle Scholar
  45. 45.
    R. R. Humphrey, “The axolotl Ambystoma mexicanum,” in Handbook of Genetics, Vol. 4, R. C. Kind, ed., Plenum Press, London (1975), pp. 3–17.CrossRefGoogle Scholar
  46. 46.
    R. R. Humphrey, “Factors influencing ovulation in the Mexican axolotl as revealed by induced spawnings,” J. Exp. Zool. 199, 209–214 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    R. R. Humphrey, “Phenotypes recognizble in the progeny of axolotl parents both heterozygous for the same two mutant genes,” Am. Zool. 18, 207–214 (1978).Google Scholar
  48. 48.
    C. Ide, “Genetic dissection of cerebellar development: mutations affecting cell position,” Am. Zool. 18, 282–288 (1978).Google Scholar
  49. 49.
    G. M. Ignatieva, “The dynamics of morphogenetic movements at the period of gastrulation in axolotl embryos,” Dokl. Akad. Nauk SSSR 179, 1005–1008 (1968).Google Scholar
  50. 50.
    G. M. Ignatieva, “Time relationships between the onset of RNA synthesis and the manifestation of the morphogenetic function in axolotl nuclei,” Sov. J. Dev. Biol. 3, 531–533 (1972).Google Scholar
  51. 51.
    G. M. Ignatieva, “Regularities of early embryogenesis in teleosts as revealed by studies of the temporal pattern of development. II. Relative duration of corresponding periods of development in different species,” Wilhelm Roux’s Arch. Dev. Biol. 179, 313–325 (1976).CrossRefGoogle Scholar
  52. 52.
    K. Ikeneshi and P. D. Nieuwkoop, “Location and ultrastructure of primordial germ cells (PGCs) in Ambystoma mexicanum,” Dev., Growth Differ. 20, 1–9 (1978).CrossRefGoogle Scholar
  53. 53.
    C. O. Jacobson, “Selective affinity as a working force in neurulation movements,” J. Exp. Zool. 168, 125–136 (1968).CrossRefGoogle Scholar
  54. 54.
    C. O. Jacobson, “Mesoderm movements in the amphibian gastrula,” Zool. Bidr., Uppsala 28, 233–239 (1969).Google Scholar
  55. 55.
    A. G. Johnen and H. Engländer, “Untersuchungen zur entodermalen Differenzierungsleistung des Ambystoma-Ektodtrms,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 159, 357–364 (1967).CrossRefGoogle Scholar
  56. 56.
    A. G. Johnen, “Der Einfluss von Li-und SCN-Ionen auf die Differenzierungsleistungen des Ambystoma-Ektodcvms und ihre Veränderung bei kombinierter Einwiklung beider Ionen,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 165, 150–162 (1970).CrossRefGoogle Scholar
  57. 57.
    J. T. Justus, “The cardiac mutant: An overview,” Am. Zool. 18, 321–326 (1978).Google Scholar
  58. 58.
    R. R. Kulikowski and F. J. Manasek, “The cardiac lethal mutant of Ambystoma mexicanum: a reexamination,” Am. Zool. 18, 349–358 (1978).Google Scholar
  59. 59.
    M. Lawrence, “Infections of the axolotl: summary of data,” Axolotl Newsletter 9, 2–6 (1980).Google Scholar
  60. 60.
    L. F. Lemanski, “Morphological, biochemical, and immunohistochemical studies on heart development in cardiac mutant axolotls, Ambystoma mexicanum,” Am. Zool. 18, 327–348 (1978).Google Scholar
  61. 61.
    S. Løvtrup, “Morphogenesis in the amphibian embryo, cell type distribution, germ layers, and fate maps,” Acta Zool. 47, 209–276 (1966).CrossRefGoogle Scholar
  62. 62.
    G. M. Malacinski, “The Mexican axolotl, Ambystoma mexicanum: its biology and developmental genetics, and its autonomous cell-lethal genes,” Am. Zool. 18, 195–206 (1978).Google Scholar
  63. 63.
    G. M. Malacinski, B. W. Young, and A. Jurrand, “Tissue interaction during axial structure pattern formation in Amphibia,” Scanning Electron Microsc. 11, 207–318 (1981).Google Scholar
  64. 64.
    G. M. Malacinski and H. M. Chung, “Establishment of the site of involution at novel locations on the amphibian embryo,” J. Morphol. 169, 149–159 (1981).CrossRefGoogle Scholar
  65. 65.
    D. A. T. New, “The axolotl (Ambystoma mexicanum),” in The Culture of Vertebrate Embryos, Academic Press (1966), pp. 153–160.Google Scholar
  66. 66.
    P. D. Nieuwkoop, “The formation of the mesoderm in urodelan amphibians. I. Induction by the endoderm,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 162, 341–373 (1969a).CrossRefGoogle Scholar
  67. 67.
    P. D. Nieuwkoop, “The formation of the mesoderm in urodelan amphibians. II. The origin of the dorsoventral polarity of the mesoderm,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 163, 298–315 (1969b).CrossRefGoogle Scholar
  68. 68.
    P. D. Nieuwkoop, “The formation of the mesoderm in urodelan amphibians. III. The vegetalizing action of the Li ion,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 166, 105–123 (1970).CrossRefGoogle Scholar
  69. 69.
    P. D. Nieuwkoop and G. A. Ubbels, “The formation of the mesoderm in urodelan amphibians. IV. Qualitative evidence for the purely ectodermal origin of the entire mesoderm and of the pharyngeal endoderm,” Wilhelm Roux’s Arch. Entwicklungsmech. Org. 169, 185–199 (1972).CrossRefGoogle Scholar
  70. 70.
    L. A. Nikitina, “Behavior of the nuclei of growing oocytes in the mature egg cytoplasm,” Dokl. Akad. Nauk SSSR 267, 463–465 (1983).Google Scholar
  71. 71.
    J. Pasteels, “New observations concerning the maps of presumptive areas of the young amphibian gastrula (Ambystoma and Discoglossus),” J. Exp. Zool. 89, 255–281 (1942).CrossRefGoogle Scholar
  72. 72.
    H. H. Reichenbach-Klinke, Krankheiten der Amphibien, Gustav Fischer, Stuttgart (1961).Google Scholar
  73. 73.
    H. H. Reichenbach-Klinke and E. Elkan, The Principal Diseases of Lower Vertebrates, Academic Press, London (1965).Google Scholar
  74. 74.
    N. N. Rott, “Cytology of fertilization in the axolotl,” Sov. J. Dev. Biol. 1, 150–156 (1970).Google Scholar
  75. 75.
    N. N. Rott, “Correlation between karyo-and cytokinesis during the first cell divisions in the axolotl (Ambystoma mexicanum Cope),” Sov. J. Dev. Biol. 4, 175–177 (1973).Google Scholar
  76. 76.
    N. N. Rott and D. R. Beritashvili, “Changes in the content of potassium and sodium during the early embryogenesis of axolotl,” Sov. J. Dev. Biol. 6, 78–80 (1975).Google Scholar
  77. 77.
    R. Rugh, Experimental Embryology, Burgess, Minneapolis (1962).Google Scholar
  78. 78.
    O. I. Schmalhausen, “Role of olfactory sac in the development of chondral capsule of the olfactory organ in Urodela,” Dokl. Akad. Nauk SSSR 23, 395–397 (1939).Google Scholar
  79. 79.
    O. I. Schmalhausen, “Development of ear vesicles in the absence of medulla oblongata in amphibians,” Dokl. Akad. Nauk SSSR 63, 276–279 (1940).Google Scholar
  80. 80.
    O. I. Schmalhausen, “A comparative experimental study of the early developmental stages of olfactory rudiments in amphibians,” Dokl. Akad. Nauk SSSR 74, 863–865 (1950).Google Scholar
  81. 81.
    O. I. Schmalhausen, “Localization and development of the olfactory organ rudiments with special reference to their origin in vertebrates,” Dokl. Akad. Nauk SSSR 74, 1045–1048 (1950).Google Scholar
  82. 82.
    O. I. Schmalhausen, “Conditions of formation and differentiation of the olfactory organs in embryogenesis,” Dokl. Akad. Nauk SSSR 76, 469–471 (1951).Google Scholar
  83. 83.
    G. M. Schreckenberg and A. G. Jacobson, “Normal stages of development of the axolotl, Ambystoma mexicanum,” Dev. Biol. 42, 391–400 (1975).PubMedCrossRefGoogle Scholar
  84. 84.
    J. Signoret, “Étude des chromosomes de la blastula chez l’axolotl,” Chromosoma 17, 328–335 (1965).PubMedCrossRefGoogle Scholar
  85. 85.
    J. Signoret, R. Briggs, and R. R. Humphrey, “Nuclear transplantation in the axolotl,” Dev. Biol. 4, 134–164 (1962).PubMedCrossRefGoogle Scholar
  86. 86.
    J. Signoret and J. Lefresne, “Contribution à l’étude de la segmentation de l’oeuf d’axolotl. I. Définition de transition blastuléene,” Ann. Embryol. Morphogen. 4, 113–123 (1971).Google Scholar
  87. 87.
    M. N. Skoblina, “Characteristics of duration of main stages of embryogenesis in Ambystoma mexicanum,” in 4th Embryological Conference: Abstracts [in Russian], Leningrad University Press (1963), pp. 172–173.Google Scholar
  88. 88.
    M. N. Skoblina, “Dimensionless description of the length of mitotic phases of first cleavage divisions in axolotl,” Dokl. Akad. Nauk SSSR 160, 700–703 (1965).PubMedGoogle Scholar
  89. 89.
    F. Sládecek and J. Lanzová, “Cytology of fertilization of the eggs of axolotl,” Folia Biol. (Ceskosl.) 5, 372–378 (1959).Google Scholar
  90. 90.
    H. M. Smith and R. B. Smith, Synopsis of the Herpetofauna of Mexico. I. Analysis of the Literature on the Mexican Axolotl, E. Lundberg, N. Bennington, Vermont (1971).Google Scholar
  91. 91.
    D. L. Stocum, “Stages of forelimb regeneration in Ambystoma maculatum,” J. Exp. Zool. 209, 395–416 (1979).PubMedCrossRefGoogle Scholar
  92. 92.
    P. W. Tank, B. M. Carlson, and T. G. Connelly, “A staging system for forelimb regeneration in the axolotl, Ambystoma mexicanum,” J. Morphol. 150, 117–128 (1976).PubMedCrossRefGoogle Scholar
  93. 93.
    P. W. Tank and N. Holder, “Pattern regulation in the regenerating limbs of urodele amphibians,” Q. Rev. Biol. 56, 113–142 (1981).CrossRefGoogle Scholar
  94. 94.
    R. Tompkins, “Genetic control of axolotl metamorphosis,” Am. Zool. 18, 313–320 (1978).Google Scholar
  95. 95.
    P. Valouch, J. Melichna, and F. Sladecek, “The number of cells at the beginning of gastrulation depending on the temperature in different species of amphibians,” Acta Univ. Carol. Biol., pp. 195–205 (1971).Google Scholar
  96. 96.
    M. A. Vorontsova, L. D. Liozner, I. V. Markelova, and E. C. Pukhalskaya, The Newt and The Axolotl [in Russian], Nauka, Moscow (1952).Google Scholar
  97. 97.
    H. Wallace, Vertebrate Limb Regeneration, Wiley, New York (1981).Google Scholar
  98. 98.
    B. W. Young, R. E. Keller, and G. M. Malacinski, “An atlas of notochord and somite morphogenesis in several anuran and urodelan amphibians,” J. Embryol. Exp. Morphol. 59, 223–247 (1980).Google Scholar
  99. 99.
    B. W. Young and G. M. Malacinski, “Comparative analysis of amphibian somite morphogenesis: cell rearrangement patterns during rosette formation and myoblast fusion,” J. Embryol. Exp. Morphol. 66, 1–26 (1981).Google Scholar
  100. 100.
    A. I. Zotin and R. V. Pagnaeva, “The moment of determination of the position of primitive groove in eggs of Acipenser and axolotl,” Dokl. Akad. Nauk SSSR 152, 765–768 (1963).Google Scholar
  101. 101.
    S. E. Zubova, “Type of variation of development rate in acipenserid embryos,” Dokl. Akad. Nauk SSSR 145, 694–697 (1962).Google Scholar

Copyright information

© Consultants Bureau, New York 1991

Authors and Affiliations

  • N. P. Bordzilovskaya
  • T. A. Dettlaff

There are no affiliations available

Personalised recommendations