Skip to main content
  • 121 Accesses

Abstract

In this chapter, we study mathematical programming models of the form

(P, θ)

Minf 0(x, θ)

(x)

s.t.

f i(x, θ) ≤ 0; iP = {1,…, m}

θ ∈ I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, R.A. and L. Kerzner, “A Simplified Test for Optimality,” Journal of Optimization Theory and Applications 25 (1978), 161–170.

    Article  Google Scholar 

  2. Bank, B., J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Nonlinear Parametric Optimization, Akademie-Verlag, Berlin, 1982.

    Google Scholar 

  3. Ben-Israel, A., A. Ben-Tal, and A. Chames, “Necessary and Sufficient Conditions for a Pareto Optimum in Convex Programming,” Econometrica 45 (1977), 811–820.

    Article  Google Scholar 

  4. Ben-Israel, A., A. Ben-Tal, and S. Zlobec, Optimality in Nonlinear Programming, Wiley, New York, 1981.

    Google Scholar 

  5. Berge, C., Espace Topologiques,Fonctions Multivoques, Dunod, Paris, 1959.

    Google Scholar 

  6. Chames, A., “Optimality and Degeneracy in Linear Programming,” Econometrica 20 (1952), 160–170.

    Article  Google Scholar 

  7. Chames, A. and W.W. Cooper, Management Models and Industrial Applications of Linear Programming, Vol. I, Wiley, New York, 1961.

    Google Scholar 

  8. Chames, A. and W.W. Cooper, “Structural Sensitivity Analysis in Linear Programming and an Exact Product Form Left Inverse,” Naval Research Logistics Quarterly 15(1968), 517–522.

    Google Scholar 

  9. Chames, A. and W.W. Cooper, “Constrained Extremization Models and Their Use in Developing System Measures,” in M.D. Mesarovie (ed.), Views on General Systems Theory, Wiley, New York, 1964, pp. 61–88.

    Google Scholar 

  10. Chames, A. and S. Zlobec, “Stability of Efficiency Evaluations in Data Envelopment Analysis,” ZOR-Methods and Models of Operational Research 33 (1989) 167–179.

    Google Scholar 

  11. Chames, A., W.W. Cooper, and R. Ferguson, “Optimal Estimation of Executive Compensation by Linear Programming,” Management Science 1 (1955), 138–151.

    Article  Google Scholar 

  12. Chames, A., W.W. Cooper, and R.J. Niehaus, “A Goal Programming Model for Manpower Planning,” in Management Science in Planning and Control, Technical Association of the Pulp and Paper Industry, New York, 1968.

    Google Scholar 

  13. Charms, A., W.W. Cooper and E. Rhodes, “Measuring the Efficiency of Decision Making Units”, European Journal of Operational Research 2(1978), 429–444.

    Article  Google Scholar 

  14. Chames, A., W.W. Cooper, R.J. Niehaus, and D. Scholtz, “An Extended Goal Programming Model for Manpower Planning”, Management Science Research Report No. 156, Carnegie-Mellon University, Pittsburg, PA, December 1968).

    Google Scholar 

  15. Chames, A., W.W. Cooper, B. Golany, L. Seiford, and J. Stutz, “Foundations of Data Envelopment Analysis for Pareto—Koopmans Efficient Empirical Production Functions,” Journal of Econometrics 30 (1985), 91–107.

    Article  Google Scholar 

  16. Charms, A., W.W. Cooper, A.Y. Lewin, R.C. Morey, and J. Rousseau, “Sensitivity and Stability Analysis in DEA,” Annals of Operations Research 2 (1985), 139–156.

    Article  Google Scholar 

  17. Dantzig, G.B., Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.

    Google Scholar 

  18. Dorfman, R., “Mathematical, or ”Linear“ Programming: A Non-mathematical Exposition”, The American Economic Review 43 (1953), 797.

    Google Scholar 

  19. Dorfman, R., P. Samuelson, and R. Solow, Linear Programming and Economic Analysis, McGraw-Hill, New York, 1958.

    Google Scholar 

  20. Estey, J.A., Business Cycles, (3rd ed., Prentice-Hall, Engelwood Cliffs, NJ, 1956.

    Google Scholar 

  21. Fiacco, A.V., Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983.

    Google Scholar 

  22. Hogan, W.W., “Point-to-set Maps in Mathematical Programming,” SIAM Review 15 (1973), 591–603.

    Article  Google Scholar 

  23. Huang, S. and S. Zlobec, “New Regions of Stability in Input Optimization,” Aplikace Matematiky 33 (1988) 470–486.

    Google Scholar 

  24. Karush, W., “Minima of Functions of Several Variables with Inequalities as Side Conditions,” M.Sc. thesis, University of Chicago, December 1939.

    Google Scholar 

  25. Klatte, D., “A Sufficient Condition for Lower Semicontinuity of Solution Sets of Systems of Convex Inequalities,” Mathematical Programming Study 21 (1984), 139–149.

    Article  Google Scholar 

  26. Kuhn, H.W. and A.W. Tucker, “Nonlinear Programming,” in: J. Neymann (ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 1951, pp. 481–492.

    Google Scholar 

  27. Lee, S.M., Goal Programming for Decision Analysis, Auerbach Publishers, Philadelphia, 1972.

    Google Scholar 

  28. Robinson, S., “Stability Theory for Systems of Inequalities. Part I: Linear Systems,” SIAM Journal on Numerical Analysis 12 (1975), 754–769.

    Article  Google Scholar 

  29. Robinson, S., “Stability Theory for Systems of Inequalities. Part II: Differentiable Nonlinear Systems,” SIAM Journal on Numerical Analysis 13 (1976), 497–513.

    Article  Google Scholar 

  30. van Rooyen, M. and S. Zlobec, “A Complete Characterization of Optimal Economic Systems with respect to Stable Perturbations,” Glasnik Matematicki (to appear).

    Google Scholar 

  31. Semple, J. and S. Zlobec, “On a Necessary Condition for Stability in Perturbed Linear and Convex Programming,” Zeitschrift für Operations Research, Series A: Theorie 31 (1987) 161–172.

    Google Scholar 

  32. Zidaroiu, C., “Regions of Stability for Random Decision Systems with [Complete Connections,” An. Univ. Bucuresti Mat. 34 (1985), 87–97.

    Google Scholar 

  33. Zlobec, S., “Stable Planning by Linear and Convex Models,” Mathematische Operationsforschung and Statistik, Series: Optimization 14 (1983), 519–535.

    Google Scholar 

  34. Zlobec, S., “Characterizing an Optimal Input in Perturbed Convex Programming,” Mathematical Programming 25 (1983), 109–121; Corrigendum 35 (1986), 368–371.

    Google Scholar 

  35. Zlobec, S., “Two Characterizations of Pareto Minima in Convex Multicriteria Optimization,” Aplikace Matematiky 29 (1984), 342–349.

    Google Scholar 

  36. Zlobec, S., “Input Optimization: I. Optimal Realizations of Mathematical Models,” Mathematical Programming 31 (1985), 245–268.

    Article  Google Scholar 

  37. Zlobec, S., “Characterizing an Optimal Input in Perturbed Linear and Convex Programming Without a Constraint Qualification,” Research report TWISK 462, NRIMS, CSIR, May 1986.

    Google Scholar 

  38. Zlobec, S., “Input Optimization. III. Optimal Realizations of Multiobjective Models,” Optimization 17 (1986), 429–445.

    Article  Google Scholar 

  39. Zlobec, S., “Survey of Input Optimization,” Optimization 18 (1987), 309–348.

    Article  Google Scholar 

  40. Zlobec, S., “Optimality Conditions for a Class of Nonlinear Programs,” Utilitas Mathematica 32 (1987) 217–230.

    Google Scholar 

  41. Zlobec, S., “Characterizing Optimality in Mathematical Programming Models,” Acta Applicandae mathematicae 12 (1988) 113–180.

    Article  Google Scholar 

  42. Zlobec, S., and A. Ben-Israel, “Perturbed Convex Programs: Continuity of Optimal Solutions and Optimal Values,” in W. Oettli and F. Steffens (eds.), Operations Research Verfahren 31 (1979), 739–749.

    Google Scholar 

  43. Zlobec, S., R. Gardner, and A. Ben-Israel, “Regions of Stability for Arbitrarily Perturbed Convex Programs,” in A.V. Fiaco (ed.), Mathematical Programming with Data Perturbations, Dekker, New York, 1981, pp. 69–89.

    Google Scholar 

  44. Zlobec, S., “The Marginal Value Formula in Input Optimization,” Optimization 22 (1991) 341–386.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zlobec, S. (1992). Topics in Input Optimization. In: Phillips, F.Y., Rousseau, J.J. (eds) Systems and Management Science by Extremal Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3600-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3600-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6599-0

  • Online ISBN: 978-1-4615-3600-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics