Skip to main content

Modeling Vestibulo-Ocular Reflex Dynamics: From Classical Analysis to Neural Networks

  • Chapter
  • 159 Accesses

Abstract

The vestibulo-ocular reflex which stabilizes the eyes during head rotation is an elegant sensorimotor system that has long attracted the attention of theoretical neuroscientists. Previous models based on classical analysis and control systems theory provided precise descriptions of overall vestibulo-ocular reflex dynamics but indicated little about the nature of the neurons that mediate this response. More recently dynamic neural network models have extended the description to the neural level providing new insights into the mechanisms of sensorimotor signal processing in the vestibulo-ocular reflex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anastasio TJ (1991) Neural network models of velocity storage in the horizontal vestibulo-ocular reflex. Biol Cybern 64:187–196

    Article  Google Scholar 

  • Anastasio TJ (in press) Implications of vestibular nucleus neuron rectification for signal processing in the horizontal vestibulo-ocular reflex. Ann N Y Acad Sci

    Google Scholar 

  • Anastasio TJ (in review) Testable predictions from recurrent neural network models of the vestibulo-ocular reflex.

    Google Scholar 

  • Arnold DB, Robinson DA (1991) A learning network model of the integrator of the oculomotor system. Biol Cybern 64:447–454

    Article  Google Scholar 

  • Blair SM, Gavin M (1979) Modification of the macaque’s vestibulo-ocular reflex after ablation of the cerebellar vermis. Acta Otolaryngol 88:235–243

    Article  Google Scholar 

  • Blair SM, Gavin M (1981) Brainstem commissures and control of time constant of vestibular nystagmus. Acta Otolaryngol 91:1–8

    Article  Google Scholar 

  • Buettner UW, Büttner U, Heim V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628

    Google Scholar 

  • Buettner UW, Heim V, Young LR (1981) Frequency response of the vestibuloocular reflex (VOR) in the monkey. Aviat Space Environ Med 52:73–77

    Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res41:310–315

    Article  Google Scholar 

  • Cannon SC, Robinson DA, Shamma S (1983) A proposed neural network for the integrator of the oculomotor system. Biol Cybem 49:127–136

    Article  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    Google Scholar 

  • Fetter M, Zee DA (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393

    Google Scholar 

  • Fuchs AF, Kimm J (1975) Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. J Neurophysiol 38:1140–1161

    Google Scholar 

  • Galiana HL, Outerbridge JS (1984) A bilateral model for central neural pathways in vestibuloocular reflex. J Neurophysiol 51:210–241

    Google Scholar 

  • Kamath BY, Keller EL (1976) A neurological integrator for the oculomotor system. Math Biosci 30:341–352

    Article  MATH  Google Scholar 

  • Mayne R (1950) The dynamic characteristics of the semicircular canals. J Comp Physiol Psychol 43:304–319

    Article  Google Scholar 

  • Milsum JH (1966) Biological control systems analysis. McGraw-Hill, New York

    Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interaction with visual following mechanisms in the squirrel monkey. I. response characteristics in normal animals. J Neurophysiol 49:134–151

    Google Scholar 

  • Raphan Th, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248

    Article  Google Scholar 

  • Robinson DA (1975) Oculomotor control signals. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergammon Press, Oxford, pp 337–374

    Google Scholar 

  • Robinson DA (1974) The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res 71:195–207

    Article  Google Scholar 

  • Robinson DA (1981) The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4:463–503

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, PDP Research Group (eds) Parallel distributed processing: explorations in the microstructure of cognition, vol 1: foundations. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Skavenski AA, Robinson DA (1973) Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 36:724–738

    Google Scholar 

  • Steinhausen W (1933) Über die beobachtung der cupula in den bogengängsampullen des labyrinths des lebenden hechts. Pflügers Arch Ges Physiol 232:500–512

    Article  Google Scholar 

  • Waespe W, Cohen B, Raphan Th (1985) Dynamic modification of the vestibuloocular reflex by the nodulus and uvula. Science 228:199–202

    Article  Google Scholar 

  • Waespe W, Heim V (1979) The velocity response of vestibular nucleus neurons during vestibular, visual, and combined angular acceleration. Exp Brain Res 37:337–347

    Article  Google Scholar 

  • Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comp 1:270–280

    Article  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York.

    Google Scholar 

  • Zee Ds,Atsumi Y, Butler PH,Gucer G (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46,878–899

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anastasio, T.J. (1993). Modeling Vestibulo-Ocular Reflex Dynamics: From Classical Analysis to Neural Networks. In: Eeckman, F.H. (eds) Neural Systems: Analysis and Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3560-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3560-7_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6581-5

  • Online ISBN: 978-1-4615-3560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics