Skip to main content

Membrane Reactors

  • Chapter

Abstract

The term membrane reactor first began to appear in the chemical processing literature around 1980. Over the past decade, it has attained a proper niche in the lexicon of membrane technology and the topic is now a regular feature at membrane conferences and symposia as well as being the subject of a growing technical literature. Although there is no commonly accepted definition of a membrane reactor, the term is usually applied to membrane processes/ devices whose function is to perform net chemical conversion under conditions in which the unique contacting features of membrane devices are exploited. In particular, the term membrane reactor is reserved for those processes wherein the membrane functions as more than simply a reactive membrane i.e., a membrane matrix used for catalyst immobilization. These special features of membrane reactors have been demonstrated with multilayer devices (Matson 1979; Matson and Quinn 1986) and, more recently, with multiphase membrane contactors (Matson 1989a 1989b; Matson and Lopez 1989; Lopez et al. 1990). These important developments appear to be among the first ones in this emerging new area of reaction engineering and, therefore, a review such as the present one can serve as but a snapshot of the field in 1990, presenting underlying concepts and illustrating typical applications.

Keywords

  • Membrane Reactor
  • Feed Stream
  • Membrane Process
  • Flow Rate Ratio
  • Product Stream

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-3548-5_43
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-3548-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich Chemical Company. 1986. Nafion resins: versatile heterogeneous catalysts. Aldrichimica Ac to 19(3):76.

    Google Scholar 

  • Axen, R., J. Porath, and S. Ernback. 1967. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 214:1302.

    CrossRef  CAS  Google Scholar 

  • Belfort, G. 1989. Membranes and bioreactors: a technical challenge in biotechnology. Biotech. Bioeng. 33:1047–1066.

    CrossRef  CAS  Google Scholar 

  • Berke, W., H. J. Schuez, C. Wandrey, M. Morr, G. Denda, and M. R. Kula. 1988. Continuous regeneration of ATP in enzyme membrane reactor for enzymic syntheses. Biotech. Bioeng. 32(2):130–139.

    CrossRef  CAS  Google Scholar 

  • Bernstein, P., J. P. Coffey, A. E. Varker, J. T. Arms, W. D. K. Clark, and P. D. Goodell. 1982. Catalyst sheet and preparation: fibrillatable polymer, supporting polymer, pore-former. U.S. Patent 4.332,698.

    Google Scholar 

  • Breslau, B. R. 1981. Catalytic processes utilizing hollow fiber membranes. U.S. Patent 4,266,026.

    Google Scholar 

  • Cares, W. R. 1977. Tert-butanol preparation in presence of perfluorosulfonic acid catalyst membrane. U.S. Patent 4,065,512.

    Google Scholar 

  • Chen, S., and Y. K. Kao. 1990. Direct oxidation of ethylene to acetaldehyde in a hollow fiber membrane reactor. Chem. Eng. Commun. 88:31–47.

    CrossRef  CAS  Google Scholar 

  • Cheryan, M., and M. Mehaia. 1986. Membrane bioreactors. In Membrane Separations in Biotechnology ed. W. C. McGregor, pp. 255–295. New York: Marcel Dekker.

    Google Scholar 

  • Clement, G. E., and R. Potter. 1971. Enzymic resolutions: organic-biochemical laboratory experiment. J. Chem. Ed. 48:695.

    CrossRef  CAS  Google Scholar 

  • Di Cosimo, R., J. D. Burrington, and R. K. Grasselli. 1986a. Effecting oxidative dehydrodimerization. U.S. Patent 4,571,443.

    Google Scholar 

  • Di Cosimo, R., J. D. Burrington, and R. K. Grasselli. 1986b. Oxidative dehydrodimerization of propylene over a bismuth oxide-lanthanum sesquioxide oxide ion-conductive catalyst. J. Catal. 102:234.

    CrossRef  Google Scholar 

  • Drioli, E., G. Iorio, M. Derosa, H. Gambacorta, and B. Nicolaus. 1982. High-temperature immobilized-cell ultrafiltration reactors. J. Membr. Sci. 11 : 365.

    CrossRef  CAS  Google Scholar 

  • Efthymiou, G. S., and M. C. Shuler. 1989. Apparatus and process to eliminate diffusional limitations in a membrane reactor by pressure cycling. U.S. Patent 4,861,483.

    Google Scholar 

  • Flaschel, E., C. Wandrey, and M. R. Kula. 1983. Ultrafiltration for the separation of biocatalysts. Adv. Biochem. Eng. 26:73.

    CAS  Google Scholar 

  • Goldberg, B. S., and R. Y. Chen. 1987. Reactor with immobilized protein on substrate wound as spiral. U.S. Patent 4,689,302.

    Google Scholar 

  • Gosser, L. W., W. H. Knoth, and G. W. Parshali. 1973. Reverse osmosis in organometallic synthesis. J. Am. Chem. Soc. 95:3436.

    CrossRef  CAS  Google Scholar 

  • Gregor, H., and P. W. Rauf. 1975. Enzyme-coupled ultrafiltration membranes. Biotech. Bioeng. 17: 445.

    CrossRef  CAS  Google Scholar 

  • Grubbs, R. H. 1977. Hybrid-phase catalysts. Chem-tech. 7:512.

    CAS  Google Scholar 

  • Gryaznov, V. M. 1983. Palladium and its alloys as membranous catalysts. Kinet. Catal. (USSR) 82:1151 (translated from Kinet. Katal. 1982).

    Google Scholar 

  • Gryaznov, V. M. 1986. Hydrogen permeable palladium membrane catalysts: an aid to the efficient production of ultra pure chemicals and pharmaceuticals. Platinum Metals Rev. 30:68.

    CAS  Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov, and A. P. Mischenko. 1975. Membrane catalysts for carrying out simultaneous processes involving evolution and consumption of hydrogen: hydrogenation catalysts, Pd alloys. U.S. Patent 3,876,555.

    Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov, and M. G. Slin’ko. 1973. Heterogeneous catalysis with reagent transfer through selectivity permeable catalysts. Proc. 5th Int. Congr. Catal. 2:1139. Amsterdam: North Holland Publishing Co.

    Google Scholar 

  • Gryaznov, V. M., V. S. Smirnov, V. M. Vdovin, B. B. Ermilova, L. D. Gogua, N. A. Pritula, and L. A. Litvinov. 1979. Method of preparing a hydrogen-permeable membrane catalyst on a base of palladium or its alloys for the hydrogenation of unsaturated organic compounds. U.S. Patent 4,132,668.

    Google Scholar 

  • Haag, W. O., and D. D. Whitehurst. 1978. Insoluble resin-metal compound complex prepared by contacting weak base ion exchange resin with solution of metal-ligand. U.S. Patent 4,111,856.

    Google Scholar 

  • Helfferich, F. 1962. Ion Exchange. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Hsieh, H. P. 1989. Inorganic membrane reactors-a review. AIChE Symp. Ser. 85(268):53–74.

    CAS  Google Scholar 

  • Huang, H. T., and C. Niemann. 1951. The kinetics of the a-chymotrypsin-catalyzed hydrolysis of acetyl-and nicotinyl-L-tryptophanomide in aqueous solutions at 25°C and pH 7.9. J. Am. Chem. Soc. 73:1541–1548.

    CrossRef  CAS  Google Scholar 

  • Ito, N., Y. Shindo, K. Haraya, and T. Hakuta. 1988. A membrane reactor using microporous glass for shifting equilibrium of cyclohexane dehydrogenation. J. Chem. Eng. Japan 21(4):399–404.

    CrossRef  CAS  Google Scholar 

  • Itoh, N. 1987. A membrane reactor using palladium. AIChE. J. 33(9):1576–1578.

    CrossRef  CAS  Google Scholar 

  • Jandel, A.-S., H. Hustedt, and C. Wandrey. 1982. Continuous production of L-alanine from fuma-rate in a two-stage membrane reactor. Eur. J. Appe. Microbiol. 15:59.

    CrossRef  CAS  Google Scholar 

  • Jones, F. N. 1969. Hydrogenation of dicyanobutene with selected rhodium (I) catalysts and a basic promoter. U.S. Patent 3,459,785.

    Google Scholar 

  • Jones, J. B., and J. F. Beck. 1976. Asymmetric syntheses and resolutions using enzymes. In Applications of Biochemical Systems in Organic Chemistry: Part I. Techniques of Chemistry X ed. J. B. Jones, C. J. Sin, and D. Perlman, pp. 112–401. New York: Wiley-Interscience.

    Google Scholar 

  • Katayama, N., I. Urabe, and H. Okada. 1983. Steady-state kinetics of coupled two-enzyme reactor with recycling of poly(ethylene glycol)-bound NAD. Eur. J. Biochem. 132:403.

    CrossRef  CAS  Google Scholar 

  • Kise, S., and M. Hayashida. 1990. Two phase system membrane reactor with cofactor recycling. J. Biotech. 14(2):221–228.

    CrossRef  CAS  Google Scholar 

  • Knazek, R. A., P. M. Guillino, R. L. Dedrick, and W. R. Kidwell. 1975. Cell culture on semipermeable tubular membranes. U.S. Patent 3,883,393.

    Google Scholar 

  • Kozarek, R. 1975. The kinetics of reactions catalyzed by enzymes bound to membranes. Ph.D. thesis. Carnegie-Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Lee, C. K., and J. Hong. 1988. Membrane reactor coupled with electrophoresis for enzymic production of aspartic acid. Biotech. Bioeng. 32(5):647–654.

    CrossRef  CAS  Google Scholar 

  • Lopez, J. L. 1983. Carrier-mediated transport in membrane reactors: deacylation of benzylpenicillin. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Lopez, J. L., S. L. Matson, T. J. Stanley, and J. A. Quinn. 1990. Liquid/liquid extractive membrane reactors. In Extractive Bioconversions Bioprocess Technologies Series ed. B. Mattiasson and O. Holst, pp. 27–66. New York: Marcel Dekker.

    Google Scholar 

  • Mannheim, A., and M. Cheryan. 1990. Continuous hydrolysis of milk protein in a membrane reactor. J. Food Sci. 55(2):381–385.

    CrossRef  CAS  Google Scholar 

  • Matson, S. L. 1979. Membrane reactors. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Matson, S. L. 1989a. Multiphase asymmetric mem-brane reactor systems. U.S. Patent 4,795,704.

    Google Scholar 

  • Matson, S. L. 1989b. Multiphase and extractive membrane reactor systems. U.S. Patent 4,800,612.

    Google Scholar 

  • Matson, S. L., and J. L. Lopez. 1989. Multiphase membrane reactors for enzymatic reaction: diffusional effects on stereoselectivity. In Frontiers in Bioprocessing ed. S. K. Sikdar, P. Todd, and M. Bier, pp. 391–403. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Matson, S. L., and J. A. Quinn. 1986. Membrane reactors in bioprocessing. Ann. N.Y. Acad. Sci. 469:152–165.

    CrossRef  CAS  Google Scholar 

  • Matson, S. L., and J. A. Quinn. 1988. Method and apparatus for conducting catalytic reactions with simultaneous product separation and recovery. U.S. Patent 4,786,597.

    Google Scholar 

  • Matson, S. L., and T. J. Stanley. 1988. Phase transfer catalysis. U.S. Patent 4,754,089.

    Google Scholar 

  • Matta, M. S., J. A. Kelley, A. J. Tietz, and M. F. Rohde. 1974. Resolution of some 3-(3,4dihydroxyphenyl)alanine precursors with alphachymotrypsin. J. Org. Chem. 39:2291.

    CrossRef  CAS  Google Scholar 

  • Michaels, A. S., C. R. Robertson and S. N. Cohen. 1984. Microbiological methods using hollow fiber membrane reactor. U.S. Patent 4,440,853.

    Google Scholar 

  • Molinari, R., E. Drioli, and G. Barbieri. 1988. Membrane reactor in fatty acid production. J. Membr. Sci. 36:525–534.

    CrossRef  CAS  Google Scholar 

  • Nagamoto, H., and H. Inoue. 1985. A reactor with catalytic membrane permeated by hydrogen. Chem. Eng. Commun. 34:315.

    CrossRef  CAS  Google Scholar 

  • Olah, G. A., P. S. Iyer, and G. K. S. Prakash. 1986. Perfluorinated resin sulfonic acid (Nafion-H) catalysis in synthesis .Synthesis No. 7 (July): 513–531.

    CrossRef  Google Scholar 

  • Ollis, D. F., J. B. Thompson, and E. T. Wolynic. 1972. Catalytic liquid membrane reactor: I. concept and preliminary experiments in acetaldehyde synthesis. AIChE J. 18:457.

    CrossRef  CAS  Google Scholar 

  • Omata, K., S. Hashimoto, H. Tominaga, and K. Fujimoto. 1989. Oxidative coupling of methane using a membrane reactor. Appl. Catal. 52(1&2):L1–L4.

    CAS  Google Scholar 

  • Parks, R. E., and G. W. E. Plaut. 1953. A manometric assay for chymotrypsin. J. Biol. Chem. 203:755–761.

    CAS  Google Scholar 

  • Pizzichini, M., C. Fabiani, A. Adami, and V. Cavazzoni. 1989. Performance of a membrane reactor for cellobiose hydrolysis. Biotech. Bioeng. 33(9):955–962.

    CrossRef  CAS  Google Scholar 

  • Pronk, W., P. J. A. M. Kerkhof, C. Van Helden, and K. Van’t Riet. 1988. The hydrolysis of tri-glycerides by immobilized lipase in a hydrophilic membrane reactor. Biotech. Bioeng. 32(4):512–518.

    CrossRef  CAS  Google Scholar 

  • Shipman, G. H. 1985. Method of making microporous sheet material and articles made therewith. U.S. Patent 4,539,256.

    Google Scholar 

  • Sondheimer, S. J., N. J. Bunce, and C. A. Fyfe. 1986. Structure and chemistry of Nafion-H: a fluorinated sulfonic acid polymer. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 026(3):351–411.

    CrossRef  Google Scholar 

  • Stanley, T. J. 1986. Advances in membrane reactors with applications to dilution effects. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Stanley, T. J., and J. A. Quinn. 1987. Phase-transfer catalysis in a membrane reactor. Chem. Eng. Sci. 42(10):2313–2324.

    CrossRef  CAS  Google Scholar 

  • Steckhan, E., S. Herrmann, J. Thoemmes, C. Wandrey, and R. Ruppert. 1990. Continuous production of NAD(H) from NAD+ and formate with a molecular weight-enhanced homogeneous 832 X/New Membrane Processes under Development catalyst in a membrane reactor. Angew. Chem. 102(4):445–447.

    CrossRef  CAS  Google Scholar 

  • Uemiya, S., T. Matsuda, and E. Kikuchi. 1990. Aromatization of propane assisted by palladium membrane reactor. Chem. Lett. 8:1335–1338.

    CrossRef  Google Scholar 

  • Updike, S. J. 1976. Dialysis membrane: catalysis of hydrogen peroxide to hydrogen and oxygen. U.S. Patent 3,996,141.

    Google Scholar 

  • Vasic-Racki, D., M. Jonas, C. Wandrey, W. Hummel, and M. R. Kula. 1989. Continuous (R)mandelic acid production in an enzyme membrane reactor. Appl. Microbio. Biotech. 3I(3):215–222.

    CrossRef  Google Scholar 

  • Vasudevan, M., T. Matsuura, G. K. Chotani, and W. R. Vieth. 1987. Simultaneous bioreaction and separation by an immobilized yeast membrane reactor. Sep. Sci. Technol. 22(7):1651–1657.

    CrossRef  CAS  Google Scholar 

  • Waller, F. J. 1986. Catalysis with metal cation-exchange resins. Catal. Rev. Sci. Eng. 28:1.

    CrossRef  CAS  Google Scholar 

  • Welch, G. R. 1977. On the role of organized multi-enzyme systems in cellular metabolism: a general synthesis. Prog. Biophys. Molec. Biol. 32:103–191.

    CrossRef  CAS  Google Scholar 

  • Wichmann, R., C. Wandrey, A. F. Bueckmann, and M. R. Kula. 1981. Continuous enzymic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotech. Bioeng. 23:2789.

    CrossRef  CAS  Google Scholar 

  • Wolynic, E. T., and D. F. Ollis. 1974. Catalytic liquid membrane reactor: making acetaldehyde. Chemtech. 4:111–117.

    CAS  Google Scholar 

  • Zaborsky, O. 1973. Immobilized Enzymes. Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matson, S.L., Quinn, J.A. (1992). Membrane Reactors. In: Ho, W.S.W., Sirkar, K.K. (eds) Membrane Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3548-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3548-5_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6575-4

  • Online ISBN: 978-1-4615-3548-5

  • eBook Packages: Springer Book Archive