Advertisement

Preparation and Properties of Pillared Synthetic Boron-Containing Saponite

  • Yi-Zhao Yao
  • Wen-Yang Xu
  • Xian-Mei Xie
  • Xian-Rong Li

Abstract

A novel synthetic boron-containing saponite was prepared hydrothermally at 260°C under autogenous pressure in the system of Na2O-SiO2- Al2O3-B2O3 - MgO. The alumina-pillared synthetic boron-containing saponite [designated as AI-PSBCS(X),X is the added boron moles that are based on Mg=6 moles in the preparation] possessed both higher cumene dealkylation activity [93.4 wt.%] and better benzene selectivity [74.0 wt. %] than alumina-pillared non-boron clay AI-PSBCS(O) [ 73.5 wt.%, 70.0 wt.%, respectively]. Chemical analysis results showed that boron was incorporated into the pillared product. The dehydroxylation endotherm of structural OR of Al-PSBCS(3.0) [807°C] occurred at higher temperature than that of AI-PSBCS(O) [795°C].

Keywords

Strong Acid Site Microporous Material Pillared Clay Bronsted Acid Site Chemical Analysis Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farmer, V. C. 1958. The infrared spectra of talc, saponite and hectorite. Miner. Mag. 31:829–845.CrossRefGoogle Scholar
  2. Farmer, V. C. 1974. The layer silicates. In The Infrared Spectra of Minerals, V. C. Farmer, ed. pp.331–364. London: Mineralogical Society.Google Scholar
  3. Figueras, F. 1988. Pillared clays as catalysts. Catal. Rev.-Sci, Eng. 30(3): 457–499.CrossRefGoogle Scholar
  4. Guan, J.J, Min, E. Z., and Yu, Z. Q., 1986. Eur. Patent Appl. 0197,012.Google Scholar
  5. Guisnet, M. 1985. Characterization of acid catalysts by use of model reactions. In Catalysis by Acids and Bases, B. Imelik et al., ed. pp. 283–297. Amsterdam: Elsevier Science Publishers B. V.CrossRefGoogle Scholar
  6. Kutz, Z. 1984. Boronsilicate molecular sieves: novel catalytic catalytic materials. In Proc. 2nd Annual IUCCP Research Symposium in Heterogeneous Catalysis, B. L. Shapiro, ed. pp. 121–141. Texas: Texas A&M Univ. Press, College Station.Google Scholar
  7. Matsuda, T., Nagashima, H., and Kikuchi, E. 1988. Physical and catalytic properties of smectite clays pillared by alumina in disproportionation of 1,2, 4-trirnethylbenzene. Appl. Catal. 45: 171–182.CrossRefGoogle Scholar
  8. Pinnavaia, T. J., Tzou, M. S., Landau, S. D., and Raythatha, R. H. 1984. On the pillaring and delamination of smectite clay catalysts by polyocations of aluminum. J. Mol. Catal. 27: 195–212.CrossRefGoogle Scholar
  9. Plee, D., Brog, F., Gatineau, L., and Fripiat, J.J. 1985. High-resolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays. J. Amer. Chem. Soc. 107: 2362–2369.CrossRefGoogle Scholar
  10. Plee, D., Gatineau, L., and Fripiat, J. J. 1987. Pillaring processes of smectites with and without tetrahedral substitution. Clays & Clay Minerals 35: 81–88.CrossRefGoogle Scholar
  11. Qian, Z. H., and Li, Y. 1986. Advances in the study of composite oxide acidity. Shi You Hua Gong 15(7): 446–452.Google Scholar
  12. Sakurai, H., Urabe, K., and Izumi, Y. 1988. New acidic pillared clay catalysts prepared from fluor-tetrasilicic mica. J. Chem. Soc., Chem. Commun. 23: 1519.CrossRefGoogle Scholar
  13. Shabtai, I., Massoth, F. E., Tokarz, M., Tsai, G. M., and McCauley, I. 1984. Characterization and molecular shape selectivity of cross-linked montmorilonite (CLM) catalysts. In Proc. 8th Int. Congress Catal. T. Seiyama and K. Tanabe, eds. pp. 828–837. Tokyo: Kodansha-Elsevier.Google Scholar
  14. Shabtai, J, Rosell, M., and Tokarz, M. 1984. Cross-linked smectites. III. Synthesis and properties of hydroxy-aluminum hectorites and fluorhectorites. Clays & Clay Minerals 32: 99–107.CrossRefGoogle Scholar
  15. She, L. Q., Liu, X. Y., and Li, X. W. 1985. Relationship between catalytic activity and acid strength of LaHY zeolites in cumene cracking and o-xylene isomerization. In Catalysis by Acids and Bases, B. Imelik et al., eds. pp. 335–342. Amsterdam: Elsevier Science Publishers B. V.Google Scholar
  16. Stubican, V., and Roy, R. 1962. Boron substitution in synthetic micas and clays. Amer. Mineral. 47: 1166–1173.Google Scholar
  17. Sun, G. D., Yan, F. S., Zhu, H. H., and Liu, Z. H. 1987. Synthesis and properties of cross-linked hydroxy-titanium bentonite. In Preparation of Catalysts IV, B. Delmon et al., eds. pp. 649–658. Amsterdam: Elsevier Science Publishers B. V.Google Scholar
  18. Urabe, K., Sakurai, H., and Izumi, Y. 1986. Pillared synthetic saponites as an efficient alkylation catalyst. J. Chem. Soc., Chem. Commun. 14: 1074.CrossRefGoogle Scholar
  19. Vaughan, D. E. W. 1988. Pillared clays—A historical perspective. Catalysis Today, 2:187–198.CrossRefGoogle Scholar
  20. Xu, W. Y., Xie, X. M., Yao, Y. Z., Li, J. P., and Zhou, D. F. 1991a. Syntheses and catalytic properties of Al-B-cross-linked bentonites. Cui Hua Xue Bao, 12(1): 26–31.Google Scholar
  21. Xu, W. Y., Yao, Y. Z., Xie, X. M., Liu, S. Z., and Zhang, T. Y. 1991b. Studies of catalytic cracking properties of Al-Zr-B composite pillared clays. Appl. Catal., 75: 33–40.CrossRefGoogle Scholar
  22. Zhang, N. X., Li, Y. Q., Zhao, H. M., and Ji, S. R, 1990. Research Methods for Clay Minerals (in Chinese). Beijing: Chinese Science Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Yi-Zhao Yao
    • 1
  • Wen-Yang Xu
    • 1
  • Xian-Mei Xie
    • 1
  • Xian-Rong Li
    • 1
  1. 1.Research Institute of Specialty ChemicalsTaiyuan University of TechnologyTaiyuanP. R. China

Personalised recommendations