Pillaring of Layered Inorganic Compounds: Fundamentals

  • A. Clearfield
  • M. E. Kuchenmeister
  • K. Wade
  • Roy Cahill
  • Paul Sylvester

Abstract

Pillared clays have shown a diversity of behaviors -indicating that they may find applications as catalysts. The theoretical pore sizes for aluminum Keggin ion- pillared clays are calculated and compared with literature data. Layered phosphates and titanates have much higher charges, which should produce smaller cavities. Methods of achieving a range of pore sizes are described and compared to preliminary experimental results on the pillaring of these classes of layered compounds.

Keywords

Clay Titanium Hydrolysis Zirconium Steam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. V. Smith and W. J. Dytrych Nature (London) 309, 607 (1984).Google Scholar
  2. 2.
    M. E. Davis, C. M. Saldarriaga, C. Montes, J. Garces, and C. Crowder Zeolites,8: 362 (1988).Google Scholar
  3. 3.
    D. E. W. Vaughan In Perspectives in Molecular Sieve Science, W. H. Flank and T. E. Whyte (eds.), ACS Symposium Series #368: p. 308. ACS, Wash. D.C. 1988CrossRefGoogle Scholar
  4. 4.
    R. Burch (ed.) “Pillared Clays” Special Edition of Catalysis Today, Elsevier, Amsterdam, 1988.Google Scholar
  5. 5.
    D. E. W. Vaughan, R. J. Lussier, and J. S. Magee U.S. Pat. 4, 176, 090 (1979); 7th Canadian Symp. on Catal., Preprints, Chem. Inst. Canada, 80 (1980).Google Scholar
  6. 6.
    D. E. W. Vaughan and R. J. Lussier. In 5th Int. Conf. Zeolites, Naples, Italy. Heyden Publ., London 1980.Google Scholar
  7. 7.
    T. J. Pinnavaia. In Heterogenous Catalysis, B. Shapiro (ed.), Texas A&M University Press, College Station, TX, 1984.Google Scholar
  8. 8.
    Data taken from the cubic form of NaAl13O4(OH)24(H2O)12(SO4)4. Crystal structure in progress by H.-L. Hu and A. Clearfield.Google Scholar
  9. 9.
    L. Fowden, R. M. Barrer, and P. P. Tinker (eds.), Clay Minerals: Their Structure, Behavior and Use, Royal Soc. Proc., London, 1984.Google Scholar
  10. 10.
    Susan Bradley, Ph.D. Dissertation, University of Calgary.Google Scholar
  11. 11.
    T. J. Pinnavaia, M.-S. Tzou, S. D. Landau and R. H. Raythatha J. Mol. Catal. 27: 195 (1984).CrossRefGoogle Scholar
  12. 13.
    M. L. Occelli and R. J. Rennard Ref. 4, pp. 309–319.Google Scholar
  13. 14.
    J. Shabtai, R. Lazar, and A. G. Oblad 7th Int. Cong. Catal., Tokyo, 828 (1980).Google Scholar
  14. 15.
    I. V. Mitchell (ed.) Pillared Layered Structures, Elsevier Appl. Sci., New York, 1990.Google Scholar
  15. 16.
    J. M. Adams Applied Clay Science,2: 309 (1987).CrossRefGoogle Scholar
  16. 17.
    A. Dyer and T. Gallardo. In Recent Developments in Ion Exchange, P. A. Willams and M. J. Hudson (eds.), p. 75. Elsevier Appl. Sci., New York, 1990.CrossRefGoogle Scholar
  17. 18.
    A. Clearfield Chem. Rev. 88: 125 (1988).CrossRefGoogle Scholar
  18. 19.
    A. Clearfield and B. D. Roberts Inorg. Chem. 27: 3237 (1988).CrossRefGoogle Scholar
  19. 20.
    A. Clearfield (ed.), Inorganic Ion Exchange Materials, CRC Press, Boca Raton, FL, 1982.Google Scholar
  20. 21.
    A. Clearfield and G. D. Smith Inorg. Chem.27: 431 (1969).CrossRefGoogle Scholar
  21. 22.
    J. M. Troup and A. Clearfield Inorg. Chem. 16: 3311 (1977).CrossRefGoogle Scholar
  22. 23.
    Y. Piffard, A. Verbaere, S. Oyetola, S. Deniard-Courant, and M. Tournoux Eur. J. Solid State Inorg. Chem., 26: 113 (1989).Google Scholar
  23. 24.
    P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, A. Jimenez-Lopez, and A. A. G. Tomlinson. In Recent Developments in Ion Exchange, P. A. Williams and M. J. Hudson (eds.), p. 95. Elsevier Appl. Sci., New York, 1990.CrossRefGoogle Scholar
  24. 25.
    D. J. MacLachlan and D. M. Bibby J. Chem. Soc. Dalton Trans. 895 (1989).Google Scholar
  25. 26.
    A. Clearfield and R. M. Tindwa J. Inorg. Nucl. Chem. 41: 871 (1979).CrossRefGoogle Scholar
  26. 27.
    G. Alberti, M. Casciola, and U. Costantino J. Colloid Interface Sci. 107: 256 (1985).CrossRefGoogle Scholar
  27. 28.
    P. Maireles-Torres, P. Olivera-Pastor, E. Rodriguez-Castellon, A. Jimenez-Lopez, and A. A. G. Tomlinson J. Mater. Chem. 1: 739 (1991).CrossRefGoogle Scholar
  28. 29.
    S. Cheng and T. C. Wang Inorg. Chem. 28: 1283 (1989).CrossRefGoogle Scholar
  29. 30.
    M. W. Anderson and J. Klinowski Inorg. Chem. 29: 3260 (1990).CrossRefGoogle Scholar
  30. 31.
    S. Andersson and A. D. Wadsley Acta Crystallogr. 14: 1245 (1961).CrossRefGoogle Scholar
  31. 32.
    M. Dion, Y. Piffard and M. Tournoux J. Inorg. Nucl. Chem. 40: 917 (1978).CrossRefGoogle Scholar
  32. 33.
    I. E. Grey, I. C. Madsen, J. A. Watts, L. A. Bursill, and J. Kwiatkowska J. Solid State Chem. 58: 350 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • A. Clearfield
    • 1
  • M. E. Kuchenmeister
    • 1
  • K. Wade
    • 1
  • Roy Cahill
    • 1
  • Paul Sylvester
    • 1
  1. 1.Texas A&M UniversityUSA

Personalised recommendations