Kinetic changes of ethanolamine base exchange activity and increase of viscosity in sarcolemmal membranes of hamster heart during development of cardiomyopathy

  • Alba Vecchini
  • Luciano Binaglia
  • Paolo Di Nardo
  • Manuela Bartoli
  • Marilena Minieri
  • Giuseppe Tallarida
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 8)

Abstract

The activity of the phospholipid base exchange enzyme specific for ethanolamine has been measured in cardiac sarcolemmal membrane preparations from Syrian golden and UM-X7.1 cardiomyopathic hamsters. In Syrian golden hamsters, the Km of the enzyme for ethanolamine does not change with age, whereas it almost doubles in membranes from cardiomyopathic animals, from the 30th to the 150th day of age. During the same period, the membrane cholesterol content increases by 68% in cardiomyopathic hamsters, whereas it does not change significantly in the Syrian golden hamster strain. As a consequence, in the adult animal, the cholesterol to phospholipid ratio and the viscosity of sarcolemmal membranes are higher in UM-X7.1 strain than in Syrian golden hamsters. A cause-consequence relationship between the enzymatic changes and the compositional modifications in the sarcolemma occurring in UM-X7.1 hamsters during the development of cardiomyopathy is proposed. (Mol Cell Biochem 116: 89–93, 1992)

Key words

cardiomyopathic hamsters base-exchange phospholipids sarcolemma heart cholesterol fluidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Homburger F, Baker JR, Nixon CW, Whitney R: Primary, generalized polymyopathy and cardiac necrosis in an inbred line of Syrian hamsters. Med Exp (Basel) 6: 339–345, 1962CrossRefGoogle Scholar
  2. 2.
    Homburger F, Baker JR, Nixon CW, Welgram G: A new hereditary disease of Syrian hamsters: primary generalized polymyopathy and cardiac necrosis. Arch Intern Med 110: 660–662, 1962PubMedCrossRefGoogle Scholar
  3. 3.
    Jasmin G, Proschek L: Hereditary polymyopathy and cardio-myopathy in the Syrian hamster. I. Progression of heart and skeletal muscle lesions. Muscle Nerve 5: 20–25, 1982Google Scholar
  4. 4.
    Proschek L, Jasmin G: Hereditary polymyopathy and cardio-myopathy in the Syrian hamster. II. Development of heart necrotic changes in relation to defective mitochondrial function. Muscle Nerve 5: 26–32, 1982Google Scholar
  5. 5.
    Paterson RA, Layberry RA, Nadkarni BB: Cardiac failure in the hamster. A biochemical and electron microscopic study. Lab Invest 26: 755–766, 1972Google Scholar
  6. 6.
    Whitmer JT: Energy metabolism and mechanical function in perfused hearts of Syrian hamsters with dilated or hypertrophic cardiomyopathy. J Mol Cell Cardiol 18: 307–317, 1986PubMedCrossRefGoogle Scholar
  7. 7.
    Okumura K, Panagia V, Jasmin G, Dhalla NS: Sarcolemmal phospholipid N-methylation in genetically determined hamster cardiomyopathy. Biochem Biophys Res Commun 143: 31–37, 1987PubMedCrossRefGoogle Scholar
  8. 8.
    Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS: Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 18: 567–572, 1984PubMedCrossRefGoogle Scholar
  9. 9.
    Hano O, Mitsuoka T, Matsumoto Y, Ahmed R, Hirata M, Hirata T, Mori M, Yano K, Hashiba K: Arrhythmogenic properties of the ventricular myocardium in cardiomyopathic Syrian hamster, BIO 14.6 strain. Cardiovasc Res 25: 49–57, 1991PubMedCrossRefGoogle Scholar
  10. 10.
    Factor SM, Sonnenblick EH: Microvascular spasm in the cardiomyopathic Syrian hamster as a cause of focal necrosis and myocardial failure. In: C Kawai and WH Abelmann (eds) Pathogenesis of myocarditis and cardiomyopathy. Recent experimental and clinical studies. University of Tokyo Press, 1987, pp 63–78Google Scholar
  11. 11.
    Berry B, Poulsen R, Yunge L, Bruneval P, Fitchett D, de Chastonay C, Gabibani G, Huttner I: Numerical densities of intramembrane particles in the cardiac sarcolemma of normal and myopathic Syrian hamsters. J Mol Cell Cardiol 15: 503–513, 1983Google Scholar
  12. 12.
    Singh JN, Dhalla NS, McNamara DB, Bajusz E, Jasmin G: Membrane alteration in failing hearts of cardiomyopathic hamsters. In: A Fleckenstein and G Rona (eds) Recent advances in studies on cardiac structure and metabolism. University Park Press, Baltimore, 1975, pp 259–268Google Scholar
  13. 13.
    Slack BE, Boegman RJ, Downie JW, Jasmin G: Cardiac membrane cholesterol in distrophic and verapamil-treated hamsters. JMol Cell Cardiol 12: 179–185, 1980CrossRefGoogle Scholar
  14. 14.
    Arienti G, Pirotta M, Giorgini D, Porcellati G: Base-exchange reactions of phospholipid metabolism in chick brain microsomal membranes. Biochem J 118: 3–4, 1970Google Scholar
  15. 15.
    Vecchini A, Binaglia L, Di Nardo P, Minieri M, Tallarida G: Phospholipid base exchange enzyme activity in sarcolemmal membranes from the heart of cardiomyopathic hamsters. Mol Cell Biochem (submitted)Google Scholar
  16. 16.
    Binaglia L, Roberti R, Vecchini A, Alunni-Bistocchi G, Porcellati G: Influence of fatty acid composition of membrane phospholipids on membrane-bound enzymic activities. Prog Fd Nutr Sci 4: 65–70, 1980Google Scholar
  17. 17.
    Binaglia L, Roberti R, Vecchini A, Porcellati G: The chemical composition of the lipid phase in biological membranes and their enzyme kinetics. Gazz Chim It 109: 437–440, 1979Google Scholar
  18. 18.
    Bajusz E, Jasmin G: Hereditary disease model of congestive cardiomyopathy: Studies on a new line of Syrian Hamsters. Fed Proc 31: 621–628, 1972Google Scholar
  19. 19.
    Pitts BJR: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 254: 6232–6235, 1979PubMedGoogle Scholar
  20. 20.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951PubMedGoogle Scholar
  21. 21.
    Folch J, Lees M, Sloane-Stanley GM: A simplified method for the isolation and purification of total lipids from animal tissues. JBiol Chem 226: 497–509, 1957Google Scholar
  22. 22.
    Mascini M, Moscone D, Palleschi G: determination of free and total cholesterol in human bile samples using enzyme electrodes. Clin Chim Acta 132: 7–15, 1983PubMedCrossRefGoogle Scholar
  23. 23.
    Baykov AA, Evtushenko OA, Avaeva SM: A malachite green procedure for ortophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171: 266–270, 1988PubMedCrossRefGoogle Scholar
  24. 24.
    Shinitzky M, Barenholz Y: Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515: 367–394, 1978PubMedCrossRefGoogle Scholar
  25. 25.
    Antunes-Madeira MC, Madeita VMC: Membrane fluidity as affected by the organochlorine insecticide DDT. Biochim Biophys Acta 1023: 469–474, 1990PubMedCrossRefGoogle Scholar
  26. 26.
    Vecchini A, Roberti R, Freysz L, Binaglia 0L: Partial purification of ethanolaminephosphotransferase from rat brain microsomes. Biochim Biophys Acta 918: 40–47, 1987PubMedCrossRefGoogle Scholar
  27. 27.
    Horrocks LA: The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thin layer chromatography. J Lipid Res 9: 469–472, 1968PubMedGoogle Scholar
  28. 28.
    Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS: Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res 18: 567–572, 1984PubMedCrossRefGoogle Scholar
  29. 29.
    Weglicki WB, Owens K, Kennet FF, Kessner A, Harris L, Wise RM: Preparation and properties of highly enriched cardiac sarcolemma from isolated adult myocytes. J Biol Chem 255: 3605–3609, 1980PubMedGoogle Scholar
  30. 30.
    Tibbits GF, Sasaki M, Ikeda M, Shimada K, Tsuruhara T, Nagatomo T: Characterization of rat myocardial sarcolemma. J Mol Cell Cardiol 13: 1051–1061, 1981PubMedCrossRefGoogle Scholar
  31. 31.
    Panagia V, Lamers JMJ, Singal PK, Dhalla NS: Ca2 +-and Mg2 su+-dependent ATPase activities in the deoxycholatetreated rat heart sarcolemma. Int J Biochem 14: 387–397, 1982PubMedCrossRefGoogle Scholar
  32. 32.
    Post JA, Langer GA, Op den Kamp JAF, Verkleij AJ: Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and ‘gas-dissected’ membranes. Biochim Biophys Acta 943: 256–266, 1988CrossRefGoogle Scholar
  33. 33.
    Dhalla NS, Pierce GN: Isolation and characterization of the sarcolemmal membrane from the heart. In: NS Dhalla (ed) Methods for Studying Cardiac Membranes, vol 1. CRC Press, Boca Raton, Florida, 1984, pp 3–18Google Scholar
  34. 34.
    Sanderman H: Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515: 209–237, 1978CrossRefGoogle Scholar
  35. 35.
    Bouchard A, Watters TA, Wu S, Parmley WW, Stone RD, Botvinick E, Sievers R, Jasmin G, Wikman-Coffelt J: Effect of altered coronary perfusion pressure on function and metabolism of normal and cardiomyopathic hamster hearts. J Mol Cell Cardiol 19: 1011–1023, 1987PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Alba Vecchini
    • 1
  • Luciano Binaglia
    • 1
  • Paolo Di Nardo
    • 2
  • Manuela Bartoli
    • 2
  • Marilena Minieri
    • 2
  • Giuseppe Tallarida
    • 2
  1. 1.Department of BiochemistryUniversity of PerugiaVia del GiochettoItaly
  2. 2.Lab. Cellular and Molecular Cardiology (Fisiopatologia Medica) Dept. of Internal MedicineII University of Roma ‘Tor Vergata’Via O. RaimondoItaly

Personalised recommendations