Atrial Natriuretic Peptide in Plasma and Atrial Auricles of the Non-Obese Diabetic (NOD) Mouse

  • S. Yano
  • Y. Kobayashi
  • K. Tanigawa
  • S. Suzuki
  • T. Shimada
  • S. Morioka
  • Y. Kato
  • K. Moriyama
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 130)


Decompensated diabetes mellitus (DM) is associated with abnormalities in fluid and electrolyte balance (1,2,3). Alterations in the renin-angiotensin- aldosterone system and vasopressin have been observed both in human with DM (4,5) and in rats treated with the diabetogenic agent, streptozotocin (STZ) (6,7,8).


Atrial Natriuretic Peptide Plasma Glucose Concentration Atrial Natriuretic Factor Urinary Glucose Atrial Natriuretic Peptide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rose BD. Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill Book Co., New York: 1977;27.Google Scholar
  2. 2.
    Christrieb AR, Long R, and Underwood RH. Renin-angiotensin-aldosterone system, electrolyte homeostasis and blood pressure in alloxan diabetes. Nature 1985;314:264–266.CrossRefGoogle Scholar
  3. 3.
    Hebden RA, Gardiner SM, Bennett T, and MacDonald IA. The influence of streptozotocin-induced diabetes mellitus on fluid and electrolyte handling in rats. Clin. Sci. 1986;70:111–117.PubMedGoogle Scholar
  4. 4.
    Zerbe RL, Vicicor F, and Robertson GL. Plasma vasopressin in uncontrolled diabetes mellitus. Diabetes 1979;28:503–508.PubMedCrossRefGoogle Scholar
  5. 5.
    Morimoto S, Uchida K, Kikoshi H, Hosojima H, Yamamoto I, and Azukizawa S. Responsiveness of plasma aldosterone to antiotensin II in patients with diabetes mellitus. Endocrinol. Jpn. 1983;30:671–678.PubMedCrossRefGoogle Scholar
  6. 6.
    Van Itallie CM, and Fernstrom JD. Osmolal effects on vasopressin secretion in the streptozotocin-diabetic rat. Am. J. Physiol. 1982;42:E411–E417.Google Scholar
  7. 7.
    Funakawa S, Okahara T, Imanishi M, Komori T, Yamamoto K, and Tochino Y. Renin-angiotensin system and prostacyclin biosynthesis in streptozotocin diabetic rats. Eur. J. Pharmacol. 1983;94:27–33.Google Scholar
  8. 8.
    Kigoshi T, Imaizumi M, Azukizawa S, Yamamoto I, Uchida K, Konishi F, and Morimoto S. Effects of angiotensin II, adrenocorticotropin, and potassium on aldosterone production in adrenal zona glomerulosa cells from streptozotocin-induced diabetic rats. Endocrinology 1986; 118:183–188.PubMedCrossRefGoogle Scholar
  9. 9.
    Lang RE, Tholken H, Canten D, Luft FC, Ruskoaho H, and Unger TH. Atrial natriuretic factor: A ciruclating hormone stimulated by volume loading. Nature 1985;314:264–266.PubMedCrossRefGoogle Scholar
  10. 10.
    Tanaka I, Misono K, and Inagami T. Atrial natriuretic factor in rat hypothalamus, atria and plasma: Determination by specific radioimmunoassay. Biochem. Biophys. Res. Commun. 1984;124Google Scholar
  11. 11.
    Kahn JK, Grekin RJ, Shenker Y, and Vinik AI. Plasma levels of immunoreactive atrial natriuretic hormone in patients with diabetes mellitus. Regul. Peptides 1986;15:323–332.CrossRefGoogle Scholar
  12. 12.
    Ortola FV, Ballerman BJ, Anderson S, Mendez RE, and Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats. J. Clin. Invest. 1987;80:670–674.PubMedCrossRefGoogle Scholar
  13. 13.
    Hebden RA, and McNeil JH. Concentration(s) of natriuretic hormone in the plasma of rats with streptozotocin-induced diabetes mellitus. Life Sci. 1988;42:1789–1795.PubMedCrossRefGoogle Scholar
  14. 14.
    Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, and Tochino Y. Breeding of a nonobese diabetic strain of mice. Exp. Anim. 1980;29:l.Google Scholar
  15. 15.
    Ederman IS, Liebman J, O’sMeara MP, and Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J. Clin. Invest. 1958;37:1236–1256.CrossRefGoogle Scholar
  16. 16.
    Sternberger LA, Hardy PH, Cuculis JJ, and Meyer HG. The unlabeled antibody enzyme method of immunochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 1970;18(5): 315–333.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka K, and Mitsushima A. A preparation method for observing intracellular structures by scanning electron microscopy. J. Microsc. 1984;133:213.PubMedCrossRefGoogle Scholar
  18. 18.
    Nakao K, Sugawara A, Morii N, Sakamoto M, Suda M, Soneda J, Ban T, Kihara M, Yamori Y, Shimokura M, Kiso Y, and Imura H. Radioimmunoassay for α-human and rat atrial natriuretic polypeptide. Biochem. Biophys. Res. Commun. 1984;124:815–821.Google Scholar
  19. 19.
    Lowry OH, Rowebroush NJ, Farr AL, and Randall RJ. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951;193:265.PubMedGoogle Scholar
  20. 20.
    Seidman C. The structure of rat preproatrial natriuretic factor as defined by a complementary DNA clone. Science 1984;225:324.PubMedCrossRefGoogle Scholar
  21. 21.
    Oikawa S, Imai M, Inuzawa C, Tawaragi Y, Nakazato H, and Matsuo H. Structure of dog and rabbit precursors of atrial natriuretic polypeptides deduced from nucleotide sequence of cloned cDNA. Biochem. Biophys. Res. Commun. 1985; 132:892–899.PubMedCrossRefGoogle Scholar
  22. 22.
    Miyata A, Kangawa K, and Matsuo H. Molecular forms of atrial natriuretic peptides in rat tissues and plasma. J. Hypertension 1986;4(suppl 2):9–ll.Google Scholar
  23. 23.
    Ballermann BJ, Bloch KD, Seidman JG, and Brenner BM. Atrial natriuretic peptide transcription, secretation, and glomerular receptor activity during mineralocorticoid escape in the rat. J. Clin. Invest. 1986;78:840–843.PubMedCrossRefGoogle Scholar
  24. 24.
    Gibbs DM. Noncalcium-dependent modulation of in vitro atrial natriuretic factor release by extracellular osmolarity. Endocrinology 1987;120:194–197.PubMedCrossRefGoogle Scholar
  25. 25.
    Naruse K, Naruse M, Obana K, Brown AB, Shibasaki T, Demura H, Shizume K, and Inagami T. Right and left atrium share a similar mode of secreting atrial natriuretic factor in vitro in rats. J. Hypertension 1986;4(suppl 6):497–499.Google Scholar
  26. 26.
    Takayanagi R, Tanaka I, Maki M, and Inagami T. Effects of changes in water-sodium balance on levels of atrial natriuretic factor messenger RNA and peptide in rats. Life Sci. 1985;36:1843–1848.PubMedCrossRefGoogle Scholar
  27. 27.
    Kohno M, Glegg K, Sambhi M, Eggena P, and Barrett J. Immunoreactive atrial natriuretic polypeptide in plasma of volume-depleted rats. Clin. Res. 1985;36:1843–1848.Google Scholar
  28. 28.
    Zisfein JB, Matsueda GR, Fallon JT, Bloch KD, Seidman CE, Seidman JG, Homcy CJ, and Graham RM. Atrial natriuretic factor: Assessment of its structure in atria and regulation of its biosynthesis with volume depletion. J. Mol. Cell. Cardiol. 1986;18:917–929.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • S. Yano
    • 1
  • Y. Kobayashi
    • 1
  • K. Tanigawa
    • 1
  • S. Suzuki
    • 1
  • T. Shimada
    • 1
  • S. Morioka
    • 1
  • Y. Kato
    • 1
  • K. Moriyama
    • 1
  1. 1.Fourth Department of Internal Medicine, Department of Pharmacology, First Department of Internal Medicine, Institute of Experimental AnimalsShimane Medical UniversityIzumoJapan

Personalised recommendations