Advertisement

Changes in Cell Morphology, [Ca2+]i and pHi During Metabolic Inhibition in Isolated Myocytes of Diabetic Rats Using Dual-Loading of Fura-2 and BCECF

  • H. Hayashi
  • N. Noda
  • H. Miyata
  • S. Suzuki
  • A. Kobayashi
  • M. Hirano
  • T. Kawai
  • T. Hayashi
  • N. Yamazaki
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 130)

Abstract

Diabetes Mellitus (DM) has been shown to be associated with heart failure in the absence of atherosclerosis (1,2), suggesting a diabetic cardiomyopathy (3,4). The mechanism of heart failure due to the diabetic cardiomyopathy remains to be elucidated. The small vessel disease (5) and the abnormalities of subcellular mechanisms such as myosin ATPase (6) and myosin isoenzymes (7), have been reported in DM myocardium. Recently, abnormalities of Ca2+ metabolism have been reported in DM myocardium, which showed decreased Ca2+-ATPase of sarcoplasmic reticulum (SR) (8,9) and sarcolemma (10). It has also been reported that the activity of Na+/Ca2+-exchange was lower in DM myocardium (11). Previous reports have suggested the possibility of the Ca2+ overload in diabetic cardiomyopathy (11).

Keywords

Metabolic Inhibition Diabetic Cardiomyopathy Diabetes Mellitus Group Sodium Cyanide Myosin Isoenzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kannel WB, Hjortland M and Castelli WP. Role of diabetes in congestive heart failure: The Framingham Study. Am J Cardiol 1974;34:29–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Regan TJ, Ettinger PO, Khan MI, Jesrani MU, Lyons MM, Oldewurtel HA and Weber M. Altered Myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Cir Res 1974;35:222–237.CrossRefGoogle Scholar
  3. 3.
    Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR and Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 1977;60:885–899.CrossRefGoogle Scholar
  4. 4.
    Fein FS and Sonnenblick EH. Diabetic Cardiomyopathy. Prog Cardiovasc Disease 1985;27:255–270.CrossRefGoogle Scholar
  5. 5.
    Hamby RI, Zoneraich S and Shermann L. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.PubMedCrossRefGoogle Scholar
  6. 6.
    Malhotra A, Penpargkul S, Fein FS, Sonnenblick EH and Scheuer J. The effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 1981;49:1243–1250.PubMedCrossRefGoogle Scholar
  7. 7.
    Dillmann WH. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes 1980;29:579–582.PubMedGoogle Scholar
  8. 8.
    Penpargkul S, Fein FS, Sonnenblick EH, and Scheuer J. Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 1981;93:303–309.CrossRefGoogle Scholar
  9. 9.
    Lopaschuk GD, Tahiliani AG, Vadlamudi RVSV, Katz S and McNeill JH. Cardiac sarcoplasmic reticulum function in insulin-or carnitine-treated diabetic rats. Am J Physiol 1983;245:H969–H976.PubMedGoogle Scholar
  10. 10.
    Heyliger CE, Prakash A and McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 1987;252:H540–H544.PubMedGoogle Scholar
  11. 11.
    Makino N, Dhalla KS, Elimban V and Dhalla NS. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol 1987;253:E202–207.Google Scholar
  12. 12.
    Gwilt DJ, Petri M, Lewis PW, Nattrass M and Pentecost BL. Myocardial infarct size and mortality in diabetic patients. Br Heart J 1985;54:466–472.PubMedCrossRefGoogle Scholar
  13. 13.
    Feuvray D, Idell-Wenger JA and Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979;44:322–329.PubMedCrossRefGoogle Scholar
  14. 14.
    Nadeau A, Tancrede G, Jobidon C, D’sAmours C and Rousseau-Migneron S. Increased mortality rate in diabetic rats submitted to acute experimental myocardial infarction. Cardiovasc Res 1986;20:171–175.PubMedCrossRefGoogle Scholar
  15. 15.
    Nayler WG and Daly MJ. Calcium and the injured cardiac myocytes. In: Physiology and Pathophysiology of the Heart, N Sperelakis (Ed.) Martinus Nijhoff Publishing, 1984;477–492.Google Scholar
  16. 16.
    Cobbold PH and Bourne PK. Aequorin measurements of free calcium in single heart cells. Nature 1984;312:444–446.PubMedCrossRefGoogle Scholar
  17. 17.
    Allen DG and Orchard CH. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol (Lond) 1983;339:107–122.Google Scholar
  18. 18.
    Smith GL and Allen DG. Effects of metabolic blockade on intracellular calcium concentration in isolated ferret ventricular muscle. Circ Res 1988.62:1223–1236.PubMedCrossRefGoogle Scholar
  19. 19.
    Jennings RB and Reimer KA. Lethal myocardial ischémie injury. Am J Pathol 1981;102:241–255.PubMedGoogle Scholar
  20. 20.
    Neely JR and Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984;55:816–824.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellis D and Noireaud J. Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J Physiol (Lond) 1987;383:125–141.Google Scholar
  22. 22.
    Eisner DA, Nichols CG, O’sNeill SC, Smith GL and Valdeolmillos M. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol (Lond) 1989;411:393–418.PubMedGoogle Scholar
  23. 23.
    Vaughan-Jones RD, Lederer WJ and Eisner DA. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. 1983;301:522–524.Google Scholar
  24. 24.
    Kim D, Cragoe Jr, EJ and Smith TW. Relations among sodium pump inhibition, Na-Ca and Na-H exchange activities, and Ca-H interaction in cultured chick heart cells. Circ Res 1987;60:185–193.PubMedCrossRefGoogle Scholar
  25. 25.
    Bers DM and Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pfluegers Arch 1982;393:171–178.CrossRefGoogle Scholar
  26. 26.
    Miyata H, Hayashi H, Suzuki S, Noda N, Kobayashi A, Fujiwake H, Hirano M and Yamazaki N. Dual loading of the fluorescent indicator fura-2 and 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) in isolated myocytes. Biochem Biophys Res Commun 1989;163:500–505.PubMedCrossRefGoogle Scholar
  27. 27.
    Hayashi H, Ponnambalam C, McDonald TF. Arrhythmic activity in reoxygenated guinea pig papillary muscles and ventricular cells. Circ Res 1987;61:124–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Li Q, Altschuld RA and Stokes BT. Quantisation of intracellular free calcium in single adult cardiomyocytes by fura-2 fluorescence microscopy: Calibration of fura-2 ratios. Biochem Biophys Res Commun 1987;147:120–126.PubMedCrossRefGoogle Scholar
  29. 29.
    Grynkiewicz G, Poenie M and Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.PubMedGoogle Scholar
  30. 30.
    Highsmith S, Bloebaum P and Snowdowne KW. Sarcoplasmic reticulum interacts with the Ca2+ indicator precursor fura-2-AM. Biochem Biophys Res Commum 1986;138:1153–1162.CrossRefGoogle Scholar
  31. 31.
    Scanlon M, Williams DA and Fay FS. A Ca2+-insensitive form of fura-2 associated with polymorphonuclear leukocytes. Assessment and accurate Ca2+ measurement. J Biol Chem 1987:262:6308–6312.PubMedGoogle Scholar
  32. 32.
    Becker PB and Fay FS. Photobleaching of fura-2 and its effect on determination of calcium concentrations. Am J Physiol 1987;253:C613-C618.Google Scholar
  33. 33.
    Timmerman MP and Ashley CC. Fura-2 diffusion and its use as an indicator of transient free calcium changes in single striated muscle cells. FEBS Lett 1986;209:l-8.Google Scholar
  34. 34.
    Jacson CV, McGrath GM, Tahiliani AG, Vadlamudi RVS, and McNeill JH. A functional and ultrastructural analysis of experimental diabetic rat myocardium. Manifestation of a cardiomyopathy. Diabetes 1985;34:876–883.CrossRefGoogle Scholar
  35. 35.
    Horackova M and Murphy MG. Effects of chronic diabetes mellitus on the electrical and contractile activities, 45Ca2+ transport, fatty acid profiles and ultrastructure of isolated rat ventricular myocytes. Pflugers Arch 1988;411:564–572.PubMedCrossRefGoogle Scholar
  36. 36.
    Bergh CH, Hjalmarson A, Sjogren KG and Jacobsson B. The effect of diabetes on phosphatidylinositol and calcium influx. Horm Metabol Res 1988;20:381–386.CrossRefGoogle Scholar
  37. 37.
    Gotzsche O. Decreased myocardial calcium uptake after isoproterenol in streptozotocin-induced diabetic rats. Studies in the in vitro perfused heart. Lab Invest 1983;48:156–161.PubMedGoogle Scholar
  38. 38.
    Vadlamudi RVSV, Rodgers RL and McNeill JH. The effect of chronic alloxan and streptozotocin-induced diabetes on isolated rat heart performance. Can J Physiol Pharmacol 1982;60:902–911.PubMedCrossRefGoogle Scholar
  39. 39.
    Vogel WM and Apstein CS. Effects of alloxan-induced diabetes on ischemia-reperfusion injury in rabbit hearts. Circ Res 1988;62:975–982.PubMedCrossRefGoogle Scholar
  40. 40.
    Tani M and Neely JR. Hearts from diabetic rats are more resistant to in vivo ischemia: Possible role of altered Ca2+ metabolism. Circ Res 1988;62:931–940.PubMedCrossRefGoogle Scholar
  41. 41.
    Miyata H, Hayashi H, Kobayashi A and Yamazaki N. Effects of strophanthidin on intracellular Ca2+ concentration and cellular morphology of guinea pig myocytes. Cardiovasc Res 1989;23:378–384.PubMedCrossRefGoogle Scholar
  42. 42.
    Fein FS, Aronson RS, Nordin C, Miller-Green B and Sonnenblick EH. Altered myocardial response to ouabain in diabetic rats: Mechanism and electrophysiology. J Mol Cell Cardiol 1983;15:769–784.PubMedCrossRefGoogle Scholar
  43. 43.
    Barry WH, Peeters GA, Rasmussen Jr CAF and Cunningham MJ. Role of changes in [Ca2+]i-in energy deprivation contracture. Circ Res 1987;61:726–734.PubMedCrossRefGoogle Scholar
  44. 44.
    Allen DG, Morris PG, Orchard CH and Pirolo JS. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol (Lond) 1985;361:185–204.Google Scholar
  45. 45.
    Bhimji S, Godin DV and McNeili JH. Coronary artery ligation and reperfusion in rabbits made diabetic with alloxan. J Endocr 1987;112:43–49.PubMedCrossRefGoogle Scholar
  46. 46.
    Carafoli E. The homeostasis of calcium in heart cells. J Mol Cell Cardiol 1985;17:203–212.PubMedCrossRefGoogle Scholar
  47. 47.
    Morgan HE, Cadenas E, Regen DM and Park CR. Regulation of glucose uptake in muscle. 2. Rate-limitiing steps and effects of insulin and anoxia in heart muscle from diabetic rats. J Biol Chem 1961;236:262–268.PubMedGoogle Scholar
  48. 48.
    Allen DG, Eisner DA, Morris PG, Porolo JS and Smith GL. Metabolic consequences of increasing intracellular calcium and force production in perfused ferret hearts. J Physiol (Lond) 1986;376:121–141.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. Hayashi
    • 1
  • N. Noda
    • 1
  • H. Miyata
    • 1
  • S. Suzuki
    • 1
  • A. Kobayashi
    • 1
  • M. Hirano
    • 2
  • T. Kawai
    • 2
  • T. Hayashi
    • 3
  • N. Yamazaki
    • 1
  1. 1.Third Department of Internal MedicineHamamatsu University School of MedicineHamamatsuJapan
  2. 2.Hamamatsu Photonics K.K.HamamatsuJapan
  3. 3.Medical PhotonicsHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations