Clinical and Radiologic Features of Cerebellar Degeneration

  • Andreas Plaitakis
  • Shoichi Katoh
  • Yun Peng Huang
Part of the Foundations of Neurology book series (FONY, volume 2)


The human cerebellar degenerations encompass a large number of heterogenous neurological disorders sharing common clinical and pathologic features. A detailed account of the nosology and epidemiology of these disorders is provided in Chapter 8. Some forms of cerebellar degeneration are obscure entities occurring with extreme rarity (even limited to single families), while others show an appreciable prevalence rate in the general population and, as such, they represent the primary hereditary ataxias.


Fourth Ventricle Medulla Oblongata Autonomic Failure Cerebellar Degeneration Olivopontocerebellar Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang Y.P., Plaitakis A. (1984). Morphological changes of olivopontocerebellar atrophy in computed tomography and comments on its pathogenesis. Adv. Neurol. 41:39–85.PubMedGoogle Scholar
  2. 2.
    Friedreich N. (1863). Uber degenerative atrophie der spinalen hinterstrange. Virchows Arch. Pathol. Anat. Physiol. 26:391–419; 433–459.CrossRefGoogle Scholar
  3. 3.
    Harding A.E. (1984). The Hereditary Ataxias and Related Disorders. In: Clinical Neurology and Neurosurgery Monographs. London: Churchill Livingstone, pp. 1–226.Google Scholar
  4. 4.
    Bouchand J.P., Barbeau A., Bouchand R., et al. (1979). A cluster of Friedreich’s ataxia in Rimouski, Quebec. Can. J. Neurol. Sci. 6:205–208.Google Scholar
  5. 5.
    Geoffroy G., Barbeau A., Breton A., Lemieux B., Aube M., Leger C., Bouchard J.B. (1976). Clinical description and radiologic evaluation of patients with Friedriech’s ataxia. Can. J. Neurol. Sci. 3:279–286.PubMedGoogle Scholar
  6. 6.
    Harding A.E. (1981). Friedreich’s ataxia: A clinical and genetic study of 90 with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620.PubMedCrossRefGoogle Scholar
  7. 7.
    Pasternac A., Krol R., Peticlerc R., et al. (1980). Hypertrophic cardiomyopathy in Friedreich’s ataxia: Symmetric or assymmetric. Can. J. Neurol. Sci. 7:379–382.PubMedGoogle Scholar
  8. 8.
    Plaitakis A. (1987). Cerebellar degenerations. Curr Neurol. 7:159–192.Google Scholar
  9. 9.
    Leclercq M., Harmant J., de-Barcy T. (1985). Psychometric studies in Friedreich’s ataxia. Acta Neurol. Belg. 85:209–221.Google Scholar
  10. 10.
    Hart R.P., Kwentus J.A., Leshmer R.T., et al. (1985). Information processing speed in Friedreich’s ataxia. Ann. Neurol. 17:612–614.PubMedCrossRefGoogle Scholar
  11. 11.
    Cote M., Davignon A., Slignac A., et al. (1976). Cardiologie signs and symptoms in Friedreich’s ataxia. Can. J. Neurol. Sci. 3:319–321.PubMedGoogle Scholar
  12. 12.
    Berg R.A., Kaplan A.M., Jarrett P.B., et al. (1980). Friedreich’s ataxia with acute cardiomyopathy. Am. J. Dis. Child. 134:390–393.PubMedGoogle Scholar
  13. 13.
    Smith E.R., Sangalang V.E., Hefferman L.P., et al. (1977). Hypertrophic cardiomyopathy: The heart disease of Friedreich’s ataxia. Am. Heart J. 94:428–434.PubMedCrossRefGoogle Scholar
  14. 14.
    Weiss E., Kreonzon I., Winer H.E., et al. (1981). Echocardiographic observations in patients with Friedreich’s ataxia. Am. J. Med. Sci. 282:136–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Cote M., Bureau M., Leger C., et al. (1979). Evolution of cardiopulmonary involvement in Friedreich’s ataxia. Can. J. Neurol. Sci. 6:151–157.PubMedGoogle Scholar
  16. 16.
    Gottdiener J.S., Hawley R.J., Maron B.J., et al. (1982). Characteristics of the cardiac hypertrophy in Friedreich’s ataxia. Am. Heart J. 103:525–531.PubMedCrossRefGoogle Scholar
  17. 17.
    Palagi B., Picossi R., Cassasa F., et al. (1988). Biventricular function in Friedreich’s ataxia: A radionuclide angiographic study. Br. Heart J. 59:692–695.PubMedCrossRefGoogle Scholar
  18. 18.
    Allard P., Duhaime M., Raso J.V., et al. (1980). Pathomechanics and management of scoliosis in Friedreich’s ataxia patients: Preliminary report. Can. J. Neurol. Sci. 7:383–388.PubMedGoogle Scholar
  19. 19.
    Allard P., Danseraeu J., Thiry P.S., et al. (1982). Scoliosis in Friedreich’s ataxia. Can. J. Neurol. Sci. 9:105–111.PubMedGoogle Scholar
  20. 20.
    Vezina J.G., Bouchard J.P., Bouchard R., et al. (1982). Urodynamic evaluation of patients with hereditary ataxias. Can. J. Neurol. Sci. 9:127–129.PubMedGoogle Scholar
  21. 21.
    Leach G.E., Farsaii A., Kark P., et al. (1982). Urodynamic manifestations of cerebellar ataxia. J. Urol. 128:348–350.PubMedGoogle Scholar
  22. 22.
    Satya-Murty S., Cacae A., Hanson P. (1980). Auditory dysfunction in Friedreich’s ataxia: Result of spinal ganglion degeneration. Neurology 30:1047–1053.CrossRefGoogle Scholar
  23. 23.
    Shannon E., Himmelfarb M.Z., Gold S. (1981). Auditory function in Friedreich’s ataxia. Arch. Otolaryngol. 107:254–256.CrossRefGoogle Scholar
  24. 24.
    Taylor M.J., McMenamin J.B., Anderman E., et al. (1982). Electrophysiologic investigation of the auditory system in Friedreich’s ataxia. Can. J. Neurol. Sci. 9:131–135.PubMedGoogle Scholar
  25. 25.
    Spoendlin H. (1974). Optic and cochleovestibular degeneration in hereditary ataxias. Brain 97:41–48.PubMedCrossRefGoogle Scholar
  26. 26.
    Nuwer M.R., Perlman S.L., Packwood J.W., et al. (1983). Evoked potential abnormalities in the various inherited ataxias. Ann. Neurol. 13:20–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Livingstone I.R., Mastaglia F.L., Edis R., et al. (1981). Visual involvement in Friedreich’s ataxia and hereditary spastic ataxia: A clinical and visual evoked response study. Arch. Neurol. 38:75–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Carroll W.M., Kris A., Baraitser M., et al. (1980). The incidence and nature of visual involvement in Friedreich’s ataxia: A clinical and visual evoked potential study of 22 patients. Brain 103:423–434.CrossRefGoogle Scholar
  29. 29.
    Kirkham T.H., Coupland S.G. (1981). An electroretinal and visual evoked potential study in Friedreich’s ataxia. Can. J. Neurol. Sci. 8:289–294.PubMedGoogle Scholar
  30. 30.
    Pinto F., Amantini A., de Scisciolo G., et al. (1988). Visual involvement in Friedreich’s ataxia: PERG and VEP study. Eur. Neurol. 28:246–251.PubMedCrossRefGoogle Scholar
  31. 31.
    Dale R.T., Dirby A.W., Jampel R.S. (1978). Square wave jerks in Friedreich’s ataxia. Am. J. Ophthalmol. 85:400–406.PubMedGoogle Scholar
  32. 32.
    Furman J.M., Perlman S., Baloh R.W. (1983). Eye movements in Friedreich’s ataxia. Arch. Neurol. 40:343–346.PubMedCrossRefGoogle Scholar
  33. 33.
    Cogan D.G., Chu F.C., Reingold D.B. (1982). Ocular signs of cerebellar disease. Arch Ophthalmol. 100:755–760.PubMedCrossRefGoogle Scholar
  34. 34.
    Monday L.A., Lemieux B., St. Vincent H., et al. (1978). Clinical and electronystamographic findings in Friedreich’s ataxia. Can. J. Neurol. Sci. 5:71–78.PubMedGoogle Scholar
  35. 35.
    Kirkham T.H., Guitton D., Katsarkos A., et al. (1979). Oculomotor abnormalities in Friedreich’s ataxia. Can. J. Neurol. Sci. 6:176–172.Google Scholar
  36. 36.
    Bouchard J.P., Barbeau A., Bouchard R., et al. (1979). Electromyography and nerve conduction studies in Friedreich’s ataxia and autosomal recessive spatic ataxia of Charlevoix-Saguenay. Can. J. Neurol. Sci. 6:185–189.PubMedGoogle Scholar
  37. 37.
    D’Angelo A., Di Donato S., Negri G., et al. (1980). Friedreich’s ataxia in northern Italy: I. Clinical, neurophysiological and in vivo biochemical studies. Can. J. Neurol. Sci. 7:359–362.Google Scholar
  38. 38.
    Jones S.J., Baraister M., Halliday A.M. (1980). Peripheral and somatosensory nerve conduction defects in Friedreich’s ataxia. J. Neurol. Neurosurg. Pshchiatry. 43:495–503.CrossRefGoogle Scholar
  39. 39.
    Bird T.D., Turner J.L., Sumi S.M., et al. (1978). Abnormal function of endocrine pancreas and anterior pituitary in Friedreich’s ataxia. Ann. Intern. Med. 88:478–481.PubMedGoogle Scholar
  40. 40.
    Tolis G. (1980). Friedreich’s ataxia and oral glucose tolerance: I. The effect of ingested glucose on serum glucose and insulin values in homozygotes and obligated heterozygotes and potential carriers of the Friedreich’s ataxia gene. Can. J. Neurol. Sci. 7:397–400.PubMedGoogle Scholar
  41. 41.
    Campanella G., Filla A., De Falco F., et al. (1980). Friedreich’s ataxia in the south of Italy: A clinical and biochemical survey of 23 patients. Can. J. Neurol. Sci. 7:351–357.PubMedGoogle Scholar
  42. 42.
    Finocchiaro G., Balo G., Micossi P. (1988). Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38:1292–1296.PubMedCrossRefGoogle Scholar
  43. 43.
    Schoenle E.J., Boltshauser E.J., Baekkeskov S., et al. (1989). Preclinical and manifest diabetes mellitus in young patients with Friedreich’s ataxia: No evidence of immune process behind the islet cell destruction. Diabetologia 32:378–381.PubMedCrossRefGoogle Scholar
  44. 44.
    Greenfield J.G. (1954). The Spino-Cerebellar Degenerations. Oxford: Blackwell.Google Scholar
  45. 45.
    Oppenheimer D.R. (1984). Diseases of the basal ganglia, cerebellum and motor neurons. In: Greenfield’s Neuropathology, J. Hume Adams, J.A.N. Corsellis, L.W. Duchen (eds): New York: John Wiley & Sons, pp. 699–747.Google Scholar
  46. 46.
    Harding A.E., Zilkha K.J. (1981). “Pseudodominant” inheritance in Friedreich’s ataxia. J. Med. Genet. 18:285–287.PubMedCrossRefGoogle Scholar
  47. 47.
    Skre H. (1975). Friedreich’s ataxia in Western Norway. Clin. Genet. 7:287–298.PubMedCrossRefGoogle Scholar
  48. 48.
    Anderman E., Remillard G.M., Goyer G. et al. (1976). Genetic and family studies in Friedreich’s ataxia. Can. J. Neurol. Sci. 3:287–303.Google Scholar
  49. 49.
    Romeo G., Menozzi P., Ferlini A., et al. (1983). Incidence of Friedreich’s ataxia in Italy estimated from consanguinous marriages. Am. J. Hum. Genet. 35:523–529.PubMedGoogle Scholar
  50. 50.
    Gusella J.F., Wexler N.S., Corneally P.M., et al. (1983). A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238.PubMedCrossRefGoogle Scholar
  51. 51.
    Chamberlain S., Shaw J., Rowland A., et al. (1988). Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature 334:248–249.PubMedCrossRefGoogle Scholar
  52. 52.
    Wallis J., Shaw J., Wilkes D., et al. (1989). Prenatal diagnosis of Friedreich ataxia. Am. J. Med. Genet. 34:458–461.PubMedCrossRefGoogle Scholar
  53. 53.
    Chamberlain S., Shaw J., Wallis J., et al. (1989). Genetic homogeneity at the Friedreich’s ataxia locus on chromosome 9. Am. J. Hum. Genet. 44:518–521.PubMedGoogle Scholar
  54. 54.
    Fujida R., Agid Y., Trouilas P., et al. (1989). Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics 4:110–111.CrossRefGoogle Scholar
  55. 55.
    Fujita R., Hanauer A., Sirugo G., et al. (1990). Additional polymorphisms at marker loci D9S5 and D9S15 generate extended haplotypes in linkage disequilibrium with Friedreich ataxia. Proc. Natl. Acad. Sci. USA 87:1796–1800.PubMedCrossRefGoogle Scholar
  56. 56.
    Hanauer A., Chery M., Fujita R., et al. (1990). The Friedreich’s ataxia gene is assigned to chromosome 9q13-q21 by mapping of tightly linked markers and shows linkage disequilibrium with D9S15. Am. J. Hum. Genet. 46:133–137.PubMedGoogle Scholar
  57. 57.
    Rapin I., Suzuki K., Valsamis M.P. (1976). Adult (chronic) GM2-gangliosidosis-atypical spinocerebellar degeneration in a Jewish sibship. Arch. Neurol. 33:120–130.PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson W.G., Choutorian A., Miranda A. (1977). A new juvenile hexosaminidase deficiency disease presenting as cerebellar ataxia: Clinical and biochemical studies. Neurology 27:1012–1018.PubMedCrossRefGoogle Scholar
  59. 59.
    Oonk J.G.W., van der Helm H.J., Martin J.J. (1979). Spinocerebellar degeneration: Hexosaminidase A and B deficiency in two adult sisters. Neurology 29:380–383.PubMedCrossRefGoogle Scholar
  60. 60.
    Willner J.P., Grabowski G.A., Gordon R.E., et al. (1981). Chronic GM2 gangliosidosis masquerading as atypical Friedreich ataxia: Clinical, morphologic and biochemical studies of nine cases. Neurology, pp. 787787-798.CrossRefGoogle Scholar
  61. 61.
    Holmes G. (1907). A form of familial degeneration of the cerebellum. Brain 30:466–489.CrossRefGoogle Scholar
  62. 62.
    Eadie M.J. (1975). Cerebelo-olivary atrophy (Holmes type). In: P.J. Vinken, G.W. Bruyn (eds): Handbook of Clinical Neurology, Vol. 21. Amsterdam: North Holland Publishing, pp. 403–414.Google Scholar
  63. 63.
    Marie P., Foix C., Alajouanine T. (1922). De l’atrophie cerebelleuse tardive a predominance corticale. Rev. Neurol. 2:849–885.Google Scholar
  64. 64.
    Mancall E.L. (1975). Late (acquired) cortical cerebellar atrophy. In: P.J. Vinken, G.W. Bruyn (eds) Handbook of Clinical Neurology, Vol. 21. Amsterdam: North Holland Publishing, pp. 477–508.Google Scholar
  65. 65.
    Menzel P. (1891). Beitrag zur Kenntniss der hereditaren ataxie und klein-hirnatrophie. Arcv. Psychiatrie Nervenkr. 22:160–190.CrossRefGoogle Scholar
  66. 66.
    Thomas D.J. (1900). L’atrophie olivo-ponto-cerebelleuse. Nouvelle Iconographie de la Salpetriere. 13:330–376.Google Scholar
  67. 67.
    Konigsmark B.W., Weiner L.P. (1970). The olivopontocerebellar atrophies: A review. Medicine 49:227–241.PubMedCrossRefGoogle Scholar
  68. 68.
    Schut J.W. (1950). Hereditary ataxia: Clinical study through six generations. Arch. Neurol. Psychiatry 63:535–568.CrossRefGoogle Scholar
  69. 69.
    Schut J.W., Haymaker W. (1951). Hereditary ataxia: A pathologic study of five cases of common ancestry. J. Neuropathol. Clin. Neurol. 1:183–213.Google Scholar
  70. 70.
    Gray R.C., Oliver C.P. (1941). Marie’s hereditary cerebellar ataxia (olivopontocerebellar atrophy). Minneso. Med. 24:327–335.Google Scholar
  71. 71.
    Kark R.A.P., Rosenberg R.N., Schut L.J. (1978). The inherited ataxias. Biochemical, viral and pathological studies. Adv. Neurol. 21:107–112.Google Scholar
  72. 72.
    Bennett R.H., Ludvigson P., DeLeon G., et al. (1984). Large-fiber sensory neuropathy in autosomal dominant spinocerebellar degeneration. Arch. Neurol. 41:175–178.PubMedCrossRefGoogle Scholar
  73. 73.
    Carenini L., Finocchiaro G., DiDonato S., et al. (1984). Electromyography and nerve conduction study in autosomal dominant olivopontocerebellar atrophy. J. Neurol. 231:34–37.PubMedCrossRefGoogle Scholar
  74. 74.
    Landis D.M., Rosenberg R.N., Landis S.C., et al. (1974). Olivopontocerebellar degeneration. Clinical and ultrastructural abnormalities. Arch. Neurol. 31:295–307.PubMedCrossRefGoogle Scholar
  75. 75.
    Haines J.L., Schut L.J., Weitkamp L.R., et al. (1984). Spinocerebellar ataxia in a large kindred: Age at onset, reproduction, and genetic linkage studies. Neurology 34:1542–1548.PubMedCrossRefGoogle Scholar
  76. 76.
    Currier R.D., Glover G., Jackson T.F., et al. (1984). Spinocerebellar ataxia: Study of a large kindered: I. General information and genetics. Neurology 34:1542–1548.CrossRefGoogle Scholar
  77. 77.
    Jackson J.F., Currier R.D., Terasaki P.I., et al. (1977). Spinocerebellar ataxia and HLA linkage. N. Engl. J. Med. 296:1138–1141.PubMedCrossRefGoogle Scholar
  78. 78.
    Nino H.E., Noreen H.T., Dufey D.P., et al. (1980). A family with hereditary ataxia: HLA typing. Neurology 30:12–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Zoghbi H.Y., Sandkuyl L.A., Ott J., et al. (1989). Assignment of autosomal dominant spinocerebellar ataxia (SCA) centromeric to the HLA region on the short arm of chromosome 6, using multifocus linkage analysis. Am. J. Hum. Genet. 44:255–263.PubMedGoogle Scholar
  80. 80.
    Mass O., Scherer H.J. (1933). Zur klinik und anatomie einiger seltener klinhivner-krankungen. Z. Ges. Neurol. Psychiat. 145:420–444.CrossRefGoogle Scholar
  81. 81.
    Garcin R., Man H.X. (1959). Sur la lenteru particuliere des mouvements conjugues des yeun observee frequement das degenerations cerebelleuses et spinocerebelleuses: La “viscoides movements voluntaire.” Rev. Neurol. 98:672–673.Google Scholar
  82. 82.
    Wadia N.H., Swami R.K. (1971). A new form of heredofamilial spinocerebellar degeneration with slow eye movements (nine families). Brain 94:359–374.PubMedCrossRefGoogle Scholar
  83. 83.
    Sears E.S., Hammerberg E.K., Norenberg M.D., et al. (1975). Supranuclear ophthalmoplegia and dementia in olivopontocerebellar atrophy: A clinocopathologic study. Neurology. 2525:395.CrossRefGoogle Scholar
  84. 84.
    Koeppen A.H., Hans M.B. (1976). Supranuclear ophthalmoplegia in olivopontocerebellar degeneration. Neurology 26:764–768.PubMedCrossRefGoogle Scholar
  85. 85.
    Zee D.S., Optican L.H., Cook J.D., et al. (1976). Slow saccades in spoinocerebellar degeneration. Arch. Neurol. 33:243–251.PubMedCrossRefGoogle Scholar
  86. 86.
    Murphy M.J., Goldblatt D. (1977). Slow eye movements with absent saccades in a patients with hereditary ataxia. Arch. Neurol. 34:191–195.PubMedCrossRefGoogle Scholar
  87. 87.
    Plaitakis A., Huang Y.P., Rudolph S. (1983). Clinical, electrophysiological and CT findings in dominant olivopontocerebellar atrophy with slow saccades. Neurology 33(Suppl. 2):218.Google Scholar
  88. 88.
    Niakam E., Bertonini T.E., Lemmi H., et al. (1984). Spinocerebellar degeneration and slow saccades in three generations of a kinship: Clinical and electrophysiologic findings. Arq. Neuropsiquiatr. 42:232–241.CrossRefGoogle Scholar
  89. 89.
    Wadia N.H. (1977). Heredo-familial spinocerebellar degeneration with slow eye movements: Another variety of olivopontocerebellar degeneration. Neurology (India) 25:147–160.Google Scholar
  90. 90.
    Carpender S., Schumacher G.A. (1966). Familial infantile cerebellar atrophy associated with retinal degeneration. Arch. Neurol. 14:82–94.CrossRefGoogle Scholar
  91. 91.
    Jampel R.S., Okazaki H., Bernstein H. (1961). Ophthalmoplegia and retinal degeneration associated with spinocerebellar ataxia. Arch. Ophthalmol. 66:247–259.PubMedCrossRefGoogle Scholar
  92. 92.
    Weiner L.P., Konigsmark B.W., Stoll J. Jr., Magladery J.W. (1967). Hereditary olivopontocerebellar atrophy with retinal degeneration. Arch. Neurol. 16:364–376.PubMedCrossRefGoogle Scholar
  93. 93.
    Colan R.V., Snead O.C., Ceballos R. (1981). Olivopontocerebellar atrophy in children: A report of seven cases in two families. Ann. Neurol. 10:355–363.PubMedCrossRefGoogle Scholar
  94. 94.
    Hussain M.M., Zannis V.I., Plaitakis A. (1989). Characterization of glutamate dehydrogenase isoproteins purified from the cerebellum of normal subjects and patients with degenerative neurological disorders, and from human neoplastic cell lines. J. Biol. Chem. 264:20730–20735.PubMedGoogle Scholar
  95. 95.
    Traboulsi E.I., Maumenee I.H., Green W.R., et al. (1988). Olivopontocerebellar atrophy with retinal degeneration. A clinical and ocular histopathologic study. Arch. Ophthalmol. 106:801–806.PubMedCrossRefGoogle Scholar
  96. 96.
    Koeppen A.H., Barron K.D. (1984). The neuropathology of olivopontocerebellar atrophy. Adv. Neurol. 41:13–38.PubMedGoogle Scholar
  97. 97.
    Plaitakis A., Nicklas W.J., Desnick R.J. (1980). Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann. Neurol. 7:297–303.PubMedCrossRefGoogle Scholar
  98. 98.
    Plaitakis A., Berl S., Yahr M.D. (1984). Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann. Neurol. 15:144–153.PubMedCrossRefGoogle Scholar
  99. 99.
    Shy G.M., Drager G.A. (1960). A neurological syndrome associated with orthostatic hypotension. Arch. Neurol. 2:511–527.PubMedCrossRefGoogle Scholar
  100. 100.
    Johnson R.H., Lee G. de j, Oppenheimer D.R., Spalding J.M.K. (1966). Autonomic failure with orthostatic hypotension due to intermediolateral columnn degeneration. Q. J. Med. 35:276–292.PubMedGoogle Scholar
  101. 101.
    Oppenheimer D.R. (1980). Lateral horn cells in progressive autonomic failure. J. Neurol. Sci. 46:393–404.PubMedCrossRefGoogle Scholar
  102. 102.
    Oppenheimer D.R. (1988). Neuropathology and neurochemistry of autonomic failure. In: R. Banniste (ed): Autonomic Failure. A Textbook of Clinical Disorders of the Autonomic Nervous System. Oxford: Oxford Medical Publishers, pp. 451–464.Google Scholar
  103. 103.
    Edie M.J. (1975). Olivopontocerebellar atrophy (Dejerine-Thomas type). In: P.J. Vinken, G.W. Bruyn (eds): Handbook of Clinical Neurology. Vol. 21. Amsterdam: North Holland Publishing pp. 415–431.Google Scholar
  104. 104.
    Plaitakis A. (1990). Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: A hypothesis. Ann. Neurol. 28:3–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Plaitakis, A., Berl S., Schut L.J., Yahr M.D. (1982). Abnormal aspartate/malate metabolism in dominantly inherited olivopontocerebellar degeneration. Ann. Neurol. 1212:79.Google Scholar
  106. 106.
    Tsiotos P., Plaitakis A., Mitsakos A., et al. (1989). L-glutamate binding sites of normal and atrophic human cerebellum. Brain Res. 481:87–96.PubMedCrossRefGoogle Scholar
  107. 107.
    Hatziefthimiou A., Mitsakos A., Mitsaki E., et al. (1990). Quantitative autoradiographic study of L-glutamate binding sites in normal and atrophic human cerebellum. J. Neurosci. Res., in press.Google Scholar
  108. 108.
    Albin R.L., Gilman S. (1990). Autoradiographic localization of inhibitory and excitatory amino acid neurotransmitter receptors in human normal and olivopontocerebellar atrophy cerebellum. Brain Res. 522:37–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Makowiec R.L., Albin R.L., Cha J.J., et al. (1990). Two types of quisqualate receptor are reduced in human OPCA cerebellar cortex. Brain Res. 523:309–312.PubMedCrossRefGoogle Scholar
  110. 110.
    Kish S.J., Schut L.J., Simmons J., et al. (1988). Brain acetylcholinetransferase activity is markedly reduced in dominantly inherited olivopontocerebellar atrophy. J. Neurol. Neurosurg. Psychiatry 51:544–554.PubMedCrossRefGoogle Scholar
  111. 111.
    Carlson M., Nakamura Y., Krapcho K., et al. (1987). Isolation and mapping of a polymorphic DNA sequence pMCT112 on chromosome 9 q (D9S15). Nucleic Acids Res. 15:10614.PubMedCrossRefGoogle Scholar
  112. 112.
    McKusic V.A. (1990). The human gene map. In: S.J. O’Brien (ed): Genetic Maps, 5th ed. Cold Spring Harbor NY: Cold Spring Harbor Laboratory Press, pp. 5.47–5.257.Google Scholar
  113. 112a.
    Plaitakis A. (1992). Olivopontocerebellar atrophy with glutamate dehydrogenase deficiency. In: de Jong (ed): Hereditary Neuropathies and Spinocerebellar Atrophies, Handbook of Clinical Neurology, Amsterdam: Elsevier Science Publishers, 60:551–568.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Andreas Plaitakis
  • Shoichi Katoh
  • Yun Peng Huang

There are no affiliations available

Personalised recommendations