Methods of Radioiodination Reactions with Several Oxidizing Agents

  • Mrinal K. Dewanjee
Part of the Developments in Nuclear Medicine book series (DNUM, volume 21)


In the early days of radioiodination, molecular I2 was the most frequently used labeling agent. Several methods of oxidizing Na125I or Na131I to I2 were used. The oxidants were ammonium persulfate,[1] nitrous acid,[2,3] hydrogen peroxide,[4] ferric sulfate,[5] and a mixture of iodide/iodate and chromic acid. The list of oxidants is summarized in Figure 8–1. The early labeling methods involved the addition of radioiodide and oxidant in acid to a protein in a buffer. Later, to avoid protein damage by the oxidant, the I2 formed was extracted and added to the protein in a buffer. After the oxidation of radioactive NaI, the volatile iodine species were extracted [2,3] with carbon tetrachloride or were carried by a stream of air to a separate vessel containing the small molecule or protein to be labeled in a suitable buffer system.[6] The disadvantages of this method are 1) lower labeling efficiency (≈33%; theoretical maximal yield, 50%, because only half of the total I2 iodinates) , 2) loss of volatile iodine in the oxidation step, and 3) increased radiation exposure to personnel. Several large and small molecules were labeled with I2, IC1, and other oxidants (see Additional Readings, Chapter 8). The methods used for radioiodinating phenols as model compounds also can be used for labeling proteins containing tyrosines.


Human Serum Albumin Label Protein Label Efficiency Additional Reading Iodine Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilmore, R. C, Jr., Robbins, M. C., and Reid, A. F., Labeling bovine and human albumin with I131, Nucleonics. 12, 65, 1954.Google Scholar
  2. 2.
    Yalow, R. A. and Berson, S. A., Immunoassay of endogenous plasma insulin in man, J Clin Invest, 39, 1157, 1960.PubMedGoogle Scholar
  3. 3.
    Eisen, H. N. and Keston, A. S., The immunologic reactivity of bovine serum albumin labelled with trace-amounts of radioactive iodine (I131) J Immunol, 63, 71, 1949.PubMedGoogle Scholar
  4. 4.
    McFarlane, A. S., Labelling of plasma proteins with radioactive iodine, Biochem J, 62, 135, 1956.PubMedGoogle Scholar
  5. 5.
    Stadie, W. C, Haugaard, N., and Vaughan, M., Studies of insulin binding with isotopically labeled insulin, J Biol Chem, 199, 729, 1952.PubMedGoogle Scholar
  6. 6.
    Heideman, M. L., Jr.. Levy, R. P., McGuire, W. L., and Shipley, R. A., 131I-Labelled bovine thyrotrophin:preparation through a new micro technique of iodine distillation and studies of adsorption to glass and polyethylene, Endocrinology. 76, 828, 1965.PubMedGoogle Scholar
  7. 7.
    Linde, S. and Hansen, B., Preparation and characterization of monoiodoinsulin, Int J Pept Protein Res, 6, 157, 1974.PubMedGoogle Scholar
  8. 8.
    Linde, S. and Hansen, B., Monoiodoinsulin specifically substituted in Tyr A14 or Tyr A19, Int J Pept Protein Res. 15, 495, 1980.PubMedGoogle Scholar
  9. 9.
    Fanning, T. G., Iodination of Escherichia coli lac repressor. Effect of tyrosine modification on repressor activity, Biochemistry, 14, 2512, 1975.PubMedGoogle Scholar
  10. 10.
    Ishiguro, M., Taira, E., Mashima, K., Funatsu, G., Funatsu, M., and Kikutani, M., Biochemical studies on ricin 12: iodination of ricin-D, Agr Biol Chem, 41, 299, 1977.Google Scholar
  11. 11.
    Abdel-Wahab, M. F. and El-Kinawy, S. A., Preparation of radioiodinated serum albumin and radioiodinated egg albumin by gel filtration, Int J Appl Radiat Isot. 16, 267, 1965.PubMedGoogle Scholar
  12. 12.
    Charamza, O., Rapid method for iodine-131 labeling of serum albumin for preparation of its macroaggregates,Isotopenpraxis, 2, 298, 1966.Google Scholar
  13. 13.
    Rosa, U., Scassellati, G. A., Pennisi, F., Riccioni,N., Giagnoni, P., and Giordani, R., Labelling of human fibrinogen with 131I by electrolytic iodination, Biochim Biophys Acta, 86, 519, 1964.PubMedGoogle Scholar
  14. 14.
    Knox, W. C. and Endicott, F. C., I131I as an antigen label in the circulating serum of non-immune rabbits, J Immunol, 65, 523, 1950.PubMedGoogle Scholar
  15. 15.
    Fine, J. and Seligman, A. M., Traumatic shock. VII. A study of the problem of the “lost plasma” in hemorrhagic, tourniquet, and burn shock by the use of radioactive iodo-plasma protein, J Clin Invest, 23, 720, 1944.PubMedGoogle Scholar
  16. 16.
    Abdel-Wahab, M. F. and El-Kinawi, S. A., Preparation of I131-labelled insulin and isolation by gel filtration, Int J Appl Radiat Isot, 16, 668, 1965.PubMedGoogle Scholar
  17. 17.
    Staub, A., Springs, V., and Elrick, H., An improved technique for labeling proteins with I131, Int J Appl Radiat Isot. 2, 59, 1957.PubMedGoogle Scholar
  18. 18.
    Abdel Wahab, M. F. and Megahed, Y. M., Incorporation of iodine-25, iodine-131, and technetium-99m into some pharmaceutics and hormones, Isotopenpraxis,9, 166, 1973.Google Scholar
  19. 19.
    McFarlane, A. S., Efficient trace-labelling of proteins with iodine (letter to the editor), Nature (London), 182, 53, 1958.PubMedGoogle Scholar
  20. 20.
    Rao, M. D. P. and Padmanabha, J., Kinetics and mechanism of iodination of phenol and substituted phenols by iodine monochloride in aqueous acetic- acid, Indian J Chem [A], 20, 133, 1981.Google Scholar
  21. 21.
    Helmkamp, R. W., Contreras, M. A., and Izzo, M. J. I131-labeling of proteins at high activity level with I131C1 produced by oxidation of total iodine in NaI131 preparations,Int J Appl Radiat Isot,18,747,1967.PubMedGoogle Scholar
  22. 22.
    Reif, A. E., A simple procedure for high-efficiency radioiodination of proteins, J Nucl Med, 9, 148, 1968.PubMedGoogle Scholar
  23. 23.
    Hallaba, E. and Drouet, J., 131I-labelling of human serum albumin by the iodinemonochloride and chloramine-T Methods, Int J Appl Radiat Isot, 22, 46, 1971.PubMedGoogle Scholar
  24. 24.
    Peabody, R. A., Halse, T., and Tsapogas, M. J., Rapid method for preparation of human fibrinogen labeled with 125I, J Nucl Med, 15, 195, 1974.PubMedGoogle Scholar
  25. 25.
    Harwig, J. F., Coleman, R. E., Harwig, S. S. L., Sherman, L. A., Siegel, B. A., and Welch, M. J., Highly iodinated fibrinogen: a new thrombus-localizing agent, J Nucl Med, 16, 756, 1975.PubMedGoogle Scholar
  26. 26.
    McFarlane, A. S., In vivo behavior of I131-fibrinogen,J Clin Invest, 42, 346, 1963.PubMedGoogle Scholar
  27. 27.
    Coleman, R. E., Krohn, K. R., Metzger, J. M., Welch, M. J., Secker-Walker, R. H., and Siegel, B. A.,An in vivo evaluation of *I-fibrinogen labeled by four different methods,J Lab Clin Med,83,977, 1974.PubMedGoogle Scholar
  28. 28.
    Regoeczi, E., The clottability of iodinated fibrinogen,J Nucl Biol Med, 15, 37, 1971.PubMedGoogle Scholar
  29. 29.
    Haxhe, J. J. and Kestens, P. J., A simple and efficient method for I131 labelling of insulin and glucagon, Clin Chim Acta. 8, 302, 1963.PubMedGoogle Scholar
  30. 30.
    Fraker, P. J. and Speck, J. C., Jr., Protein and cell membrane iodinations with a sparingly soluble chloramide, 1/3,4,6-tetrachloro-3a,6a-diphenyl-glycoluril, Biochem Biophys Res Commun,80,849, 1978.PubMedGoogle Scholar
  31. 31.
    Helmkamp, R. W., Goodland, R. L., Bale, W. F., Spar, I. L., and Mutschler, L. E., High specific activity iodination of -globulin with iodine-131 monochloride, Cancer Res, 20, 1495, 1960.PubMedGoogle Scholar
  32. 32.
    Bale, W. F., Helmkamp, R. W., Davis, T. P., Izzo, M. J., Goodland, R. L., Contreras, M. A., and Spar, I. L., High specific activity labeling of protein with I131 by the iodine monochloride method, Proc Soc Exp Biol Med, 122, 407, 1966.PubMedGoogle Scholar
  33. 33.
    Gmelin, L.,Handbuch der Anorganischen Chemie: Jod, 8th Ed.,Verlag Chemie G.m.b.H.,Berlin,1931, 442.Google Scholar
  34. 34.
    Hunter, W. M. and Greenwood, F. C., Preparation of iodine-131 labelled human growth hormone of high specific activity (letter to the editor), Nature (London), 194, 495, 1962.Google Scholar
  35. 35.
    Greenwood, F. C., Hunter, W. M., and Glover, J. S., The preparation of 131I-labelled human growth hormone of high specific radioactivity, Biochem J, 89, 114, 1963.PubMedGoogle Scholar
  36. 36.
    Bradfield, A. E., Orton, K. J. P., and Roberts, I. C., Chloramines as halogenating agents. Iodination by a chloramine and an iodide, J Chem Soc, Part 1, 782, 1928.Google Scholar
  37. 37.
    Jones, B. and Richardson, E. N., Chloramines as a source of iodine chloride. The preparation of iodo-phenols, -naphthols, and -aromatic ethers by means of a chloramine and an iodide, J Chem Soc, Part 1, 713, 1953.Google Scholar
  38. 38.
    Jennings, V. J., Analytical applications of chloramine-T,CRC Crit Rev Anal Chem, 3, 407, 1974.Google Scholar
  39. 39.
    Bolton, A.E., Radioiodination Technigues, Review 18, Radiochemical Centre,Amersham,England,1977, 39.Google Scholar
  40. 40.
    Baldas, J.,Colmanet, S.,and Porter,Q. N., The tritium kinetic isotope effect for the iodination of L-(5-3H) - 3-iodotyrosine,Aust J Chem,34, 1147, 1981.Google Scholar
  41. 41.
    Butt, W. R., The iodination of follicle-stimulating and other hormones for radioimmunoassay, J Endocrinol.55, 453, 1972.PubMedGoogle Scholar
  42. 42.
    Redshaw, M. R. and Lynch, S. S., An improved method for the preparation of iodinated antigens for radioimmuno - assay, J Endocrinol. 60, 527, 1974.PubMedGoogle Scholar
  43. 43.
    Chowdhary, S. Y., Ramjilal, A. D., Rahalkar, A. D., Chacko, V. J., and Mani, R. S., Evaluation of a single step procedure for preparation of iodine-131-labeled macroaggregated albumin of high specific activity, Isotopenpraxis, 11, 281, 1975.Google Scholar
  44. 44.
    Kurcbart, H., Quiroga, S., Caro, R. A., and Radicella,R., Influence of properties of I -131 preparations on labeling of polypeptides using chloramine-T-method, Radiochim Acta, 18, 104, 1972.Google Scholar
  45. 45.
    Damkjaer Nielsen, M. D., Jørgensen, J., and Giese, J., 125I-Labelling of angiotensin I and II, Acta Endocrinol, 67, 104, 1971.Google Scholar
  46. 46.
    Krohn, K., Sherman, L., and Welch, M., Studies of radioiodinated fibrinogen. I. Physicochemical properties of the IC1, chloramine-T, and electrolytic reaction products, Biochim Biophvs Acta, 285, 404, 1972.Google Scholar
  47. 47.
    Landon, J., Livanou, T., and Greenwood, F. C., The preparation and immunological properties of 131I adrenocorticotrophin, Biochem J, 105, 1075, 1967.PubMedGoogle Scholar
  48. 48.
    Eckelman, W. C., Kubota, H., Siegel, B. A., Komai, T., Rzeszotarski, W. J., and Reba, R. C, Iodinated bleomycin: an unsatisfactory radiopharmaceutical for tumor localization, J Nucl Med, 17, 385, 1976.PubMedGoogle Scholar
  49. 49.
    Meyers, J., Krohn, K., and DeNardo, G., Preparation and chemical characterization of radioiodinated bleomycin, J Nucl Med, 16, 835, 1975.PubMedGoogle Scholar
  50. 50.
    Krohn, K. A. and Welch, M. J., Studies of radioiodinated fibrinogen II. Lactoperoxidase iodination of fibrinogen and model compounds, Int J Appl Radiat Isot, 25, 315,1974.PubMedGoogle Scholar
  51. 51.
    Glaskov, A., Labelling of corticotropin with iodine-125,Experientia. 22, 63, 1966.Google Scholar
  52. 52.
    Roberts, R. C., Sonnentag, C. 0., and Frisbie, J. H., Rapid preparation of autologous radioiodinated fibrinogen, J Nucl Med, 13, 843, 1972.PubMedGoogle Scholar
  53. 53.
    Reuge, C., Labeling of fibrinogen by a method using chloramine T (abstract), Nucl Sci Abstr. 20, 2838, 1966.Google Scholar
  54. 54.
    Herzmann, H., Ocklitz, H. W., and Weppe, Ch.-M., Antibodies labelled with radioactive iodine and the possibilities of their application in identifying bacterial infections, Isotopenpraxis, 5, 14, 1969.Google Scholar
  55. 55.
    Schmidt, H. E., Teichmann, B., Vogt, R., and Herzmann,H., Labelling antibodies with l31I by the chloramine-T method, Isotopenpraxis, 10, 401, 1974.Google Scholar
  56. 56.
    Bocci, V., Viti, A., and Pacini, A., Preparation of I131-V-globulin aggregates, Int J Appl Radiat Isot, 19, 161, 1968.PubMedGoogle Scholar
  57. 57.
    Caro, R. A., Ciscato, V. A., De Giacomini, S. M. V., Quiroga, S., and Radicella, R., Labeling of proteins with 125I and experimental determination of its specific activity, Int J Appl Radiat Isot, 26, 527, 1975.PubMedGoogle Scholar
  58. 58.
    Martin, T. J., Melick, R. A., and deLuise, M., Metabolism of parathyroid hormone. Degradation of 125I-labelled hormone by a kidney enzyme, Biochem J, 111, 509, 1969.PubMedGoogle Scholar
  59. 59.
    Wajchenberg, B. L., Pinto, H., Torres de Toledo e Souza, I., Lerário, A. C., and Pieroni, R. R., Preparation of iodine-125-labeled insulin for radioimmunoassay: comparison of lactoperoxidase and chloramine-T iodination, J Nucl Med, 19, 900, 1978.PubMedGoogle Scholar
  60. 60.
    Chan, A. S. K., Warbick, A., Ege, G. N., and Ottensmeyer,F. P., Iodinated E. coli 70S ribosomes as a radiocolloid of uniform particle size for lymph-node and liver scanning, J Nucl Med, 18, 1034, 1977.Google Scholar
  61. 61.
    Young, J. D., Lazarus, L., and Chisholm, D. J., Radioimmunoassay of secretin in human serum, J Nucl Med, 9, 641, 1968.PubMedGoogle Scholar
  62. 62.
    Golstein-Golaire, J. and Vanhaelst, L.,Influence of the purification of 125I-iodinated thyrotropin on the sensitivity of the radioimmunoassay, Int J APPI Radiat Isot, 21, 17, 1970.Google Scholar
  63. 63.
    Rhodes, B. A., Turaihi, K. S., Bell, W. R., and Wagner, H. N., Jr., Radioactive urokinase for blood clot scanning, J Nucl Med, 13, 646, 1972.PubMedGoogle Scholar
  64. 64.
    Sherman, L. A., Harwig, S., and Hayne, O. A., Macromolecular complexes formed as the result of chloramine-T radioiodination of proteins, Int J APP1 Radiat Isot, 25, 81, 1974.Google Scholar
  65. 65.
    Markwell, M. A. K., A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum, Anal Biochem. 125, 427, 1982.PubMedGoogle Scholar
  66. 66.
    Steinfeld, J. L., Paton, R. R., Flick, A. L., Milch, R. A., and Beach, F. E., Distribution and degradation of human serum albumin labeled with I131 by different techniques, Ann NY Acad Sci, 70, 109, 1957.PubMedGoogle Scholar
  67. 67.
    Pennisi, F. and Rosa, U., Preparation of radioiodinated insulin by constant current electrolysis, J Nucl Biol Med, 13, 64, 1969.PubMedGoogle Scholar
  68. 68.
    Rosa, U., Pennisi, F., Bianchi, R., Federighi, G., and Donato, L., Chemical and biological effects of iodination on human albumin, Biochem Biophys Acta. 133, 486, 1967.PubMedGoogle Scholar
  69. 69.
    Teare, F. W. and Rosenberg, R. A., Micro-electrolytic radioiodination of polypeptide hormones to high specific activity, Int J App1 Radiat Isot, 29, 567, 1978.Google Scholar
  70. 70.
    Sammon, P. J., Stansbury, M., and Stahr, G., Microelectrolytic iodination of polypeptide hormones, Int J App1 Radiat Isot, 30, 359, 1979.Google Scholar
  71. 71.
    Stevens, A. M., Noujaim, A. A., Shysh, A., Ediss, C, and Hill, J. R., Studies on the electrolytic method of radioiodination of fibrinogen, Int J Nucl Med Biol. 4, 137, 1977.Google Scholar
  72. 72.
    Katz, J. and Bonorris, G., Electrolytic iodination of proteins with I125 and I131, J Lab Clin Med, 72, 966,1968.PubMedGoogle Scholar
  73. 73.
    Hladik, O., Labeling of human serum albumin with iodine-131 by electrochemical oxidation of iodide to iodine, Isotopenpraxis, 2, 296, 1966.Google Scholar
  74. 74.
    Jovanovic, V., Nemoda, D., and Lwin, K., An effective electrolytic iodination of human serum albumin at alkaline pH, Int J App1 Radiat Isot, 23, 342, 1972.Google Scholar
  75. 75.
    Teulings, F. A. G. and Biggs, G. J., Study of electrolytic labeling of fibrinogen with 131 Iodine by Sephadex G-10 gel filtration, Clin Chim Acta, 27, 57, 1970.PubMedGoogle Scholar
  76. 76.
    Harwig, J. F., Welch, M. J., and Coleman, R. E., Preparation and use of 123I-labeled highly iodinated fibrinogen for imaging deep-vein thrombi, J Nucl Med, 17, 397, 1976.PubMedGoogle Scholar
  77. 77.
    Caro, R. A., Ciscato, V. A., de Giacomini, S. M. V., Kurcbart, H., Quiroga, S., and Radicella, R., Physico - chemical study of the electrolytic incorporation of iodine into bovine growth hormone (BGH), Int J Appl Radiat Isot, 25, 497, 1974.PubMedGoogle Scholar
  78. 78.
    Sammon, P. J., Brand, J. S., Neuman, W. F., and Raisz, L. G., Metabolism of labeled parathyroid hormone. I. Preparation of biologically active 125I-labeled parathyroid hormone, Endocrinology. 92, 1596, 1973.PubMedGoogle Scholar
  79. 79.
    Morrison, M., Lactoperoxidase-catalyzed iodination as a tool for investigation of proteins, Methods Enzvmol, 70, 214, 1980.Google Scholar
  80. 80.
    Hadi, U. A. M., Malcolme-Lawes, D. J., and Oldham, G., The labelling of small molecules with radioiodine,Int J Appl Radiat Isot. 29, 621, 1978.Google Scholar
  81. 81.
    Bayse, G. S. and Morrison, M., Peroxidase catalyzed reactions of iodide at low pH, Arch Biochem Biophys, 145, 143, 1971.PubMedGoogle Scholar
  82. 82.
    Rombauts, W. A., Schroeder, W. A., and Morrison, M., Bovine lactoperoxidase. Partial characterization of the further purified protein, Biochemistry, 6, 2965, 1967.PubMedGoogle Scholar
  83. 83.
    Neidleman, S. L., Microbial halogenation, CRC Crit Rev Microbiol, 3, 333, 1975.PubMedGoogle Scholar
  84. 84.
    Neidleman, S. L., Geigert, J., Dalietos, D. J., and DeWitt, S. K., Enzymatic halogenation of allyl alcohol to 2,3-bromochloro-, bromoiodo-, and fluoroiodo-1 - propanols:a study at the interface of chemical and enzymatic catalyses, in, Enzyme Technology,Lafferty, R. M., Ed., Springer-Verlag, New York, 1983, 79.Google Scholar
  85. 85.
    Hultquist, D. E. and Morrison, M., Lactoperoxidase. I. The prosthetic group of lactoperoxidase, J Biol Chem, 238, 2843, 1963.Google Scholar
  86. 86.
    Morrison, M. and Bayse, G. S., Catalysis of iodination by lactoperoxidase, Biochemistry, 9, 2995, 1970.PubMedGoogle Scholar
  87. 87.
    Marchalonis, J. J., An enzymic method for the trace iodination of immunoglobulins and other proteins, Biochem J, 113, 299, 1969.PubMedGoogle Scholar
  88. 88.
    Hamlin, J. L. and Arquilla, E. R., Monoiodoinsulin. Preparation, purification and characterization of biologically active derivative substituted predominantly on tyrosine A14, J Biol Chem, 249, 21, 1974.PubMedGoogle Scholar
  89. 89.
    Schenkein, I., Levy, M., and Uhr, J. W., The use of glucose oxidase as a generator of H202 in the enzymatic radioiodination of components of cell surfaces, Cell Immunol. 5, 490, 1972.PubMedGoogle Scholar
  90. 90.
    Miyachi, Y., Vaitukaitis, J. L., Nieschlag, E., and Lipsett, M. B., Enzymatic radioiodination of gonadotropins, J Clin Endocrinol Metab, 34, 23, 1972.PubMedGoogle Scholar
  91. 91.
    Miyachi, Y. and Chrambach, A., Structural integrity of gonadotropins after enzymatic iodination, Biochem Biophys Res Commun, 46, 1213, 1972.PubMedGoogle Scholar
  92. 92.
    David, G. S., Solid state lactoperoxidase: a highly stable enzyme for simple, gentle iodination of proteins, Biochem Biophys Res Commun, 48, 464, 1972.PubMedGoogle Scholar
  93. 93.
    David, G. S. and Reisfeld, R. A., Protein iodination with solid state lactoperoxidase, Biochemistry,13, 1014, 1974.PubMedGoogle Scholar
  94. 94.
    Graf, E., Filoteo, A. G., and Penniston, J. T., Preparation of 125I with retention of full biological activity: its binding to human erythrocyte ghosts, Arch Biochem Biophys, 203, 719, 1980.PubMedGoogle Scholar
  95. 95.
    Gross, A. J. and Sizer, I. W., The oxidation of tyramine, tyrosine and related compounds by peroxidase,J Biol Chem, 234, 1611, 1959.PubMedGoogle Scholar
  96. 96.
    Sizer, I. W., Oxidation of proteins by tyrosinase and peroxidase, Advances Enzymol, 14, 129, 1953.Google Scholar
  97. 97.
    Lambert, B. and Jacquemin, C, About insulin iodination.I. Monoiodination of insulin by horseradish peroxidase, Biochimie, 55, 1395, 1974.Google Scholar
  98. 98.
    Schultz, J. and Kaminker, K., Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization, Arch Biochem Biophys, 96, 465, 1962.PubMedGoogle Scholar
  99. 99.
    Odajima, T., Myeloperoxidase of the leukocyte of normal blood. Nature of the prosthetic group of myeloperoxidase, J Biochem (Tokyo), 87, 379, 1980.Google Scholar
  100. 100.
    Morrison, M., Iodination of tyrosine: isolation of lactoperoxidase (bovine), Methods Enzvmol. 17, 653, 1970.Google Scholar
  101. 101.
    Dubin, A. and Silberring, J., Catalytic iodination of proteins by horse myeloperoxidase in solid state, Anal Biochem, 72, 372, 1976.PubMedGoogle Scholar
  102. 102.
    Hallenberg, P. F. and Hager, L. P., Purification of chloroperoxidase from Caldariomyces fumago. Methods Enzvmol, 52, 521, 1978.Google Scholar
  103. 103.
    Thomas, J. A. and Hager, L. P., The peroxidation of molecular iodine to iodate by chloroperoxidase, Biochem Biophys Res Commun, 32, 770, 1968.PubMedGoogle Scholar
  104. 104.
    Hager, L. P., Morris, D. R., Brown, F. S., and Eberwein, H., Chloroperoxidase. II. Utilization of halogen anions, J Biol Chem, 241, 1769, 1966.PubMedGoogle Scholar
  105. 105.
    Libby, R. D., Thomas, J. A., Kaiser, L. W., and Hager, L. P., Chloroperoxidase halogenation reactions.Chemical versus enzymic halogenating intermediates,J Biol Chem, 257, 5030, 1982.PubMedGoogle Scholar
  106. 106.
    Thorell, J. I. and Johansson, B. G., Enzymic iodination of polypeptides with 125I to high specific activity, Biochim Biophys Acta, 251, 363, 1971.PubMedGoogle Scholar
  107. 107.
    McIlhinney, J. and Schulster, D., The preparation of biologically active 125I-labeled adrenocor-ticotrophic hormone by a simple enzymic radioiodination procedure utilizing lactoperoxidase, Endocrinology.94, 1259, 1974.PubMedGoogle Scholar
  108. 108.
    Hemmaplardh, D. and Morgan, E. H., A comparative study of chemically and enzymatically radioiodinated transferrin, Int J Appl Radiat Isot, 27, 89, 1976.PubMedGoogle Scholar
  109. 109.
    Frantz, W. L. and Turkington, R. W., Formation of biologically active 125I-prolactin by enzymatic radioiodination, Endocrinology, 91, 1545, 1972.PubMedGoogle Scholar
  110. 110.
    Morrison, M. and Schonbaum, G. R., Pero×idase-catalyzed halogenation, Annu Rev Biochem, 45, 861, 1976.PubMedGoogle Scholar
  111. 111.
    Matkovics, B., Rakonczay, Z., Rajki, S. E., and Baláspiri, L., Steroids. XII. Iodination of aromatic steroids by peroxidases, Steroidologia, 2, 77, 1971.PubMedGoogle Scholar
  112. 112.
    Stöcklin, G., Bromine-77 and iodine-123 radiophar-maceuticals,Int J Appl Radiat Isot, 28, 131, 1977.PubMedGoogle Scholar
  113. 113.
    Lipska, A. E. and McCasland, G. E., Synergistic effect of benzhydrylation and iodination of the flammability of alpha-cellulose, J Appl Poly, 15, 419, 1971.Google Scholar
  114. 114.
    Carlson, G. L., Heterogenous iodination of α-cellulose:preparation of a radioactive analog of dietary fiber, Int J Appl Radiat Isot. 29, 557, 1978.Google Scholar
  115. 115.
    Malagelada, J.-R., Carter, S. E., Brown, M. L., and Carlson, G. L., Radiolabeled fiber: a physiologic marker for gastric emptying and intestinal transit of solids, Dig Dis Sci, 25, 81, 1980.PubMedGoogle Scholar
  116. 116.
    Carryer, P. W., Brown, M. L., Malagelada, J.-R., Carlson, G. L., and McCall, J. T., Quantification of the fate of dietary fiber in humans by a newly developed radiolabeled fiber marker, Gastroenterology,82, 1389, 1982.PubMedGoogle Scholar
  117. 117.
    Malagelada, J.-R., Robertson, J. S., Brown, M. L., Remington, M., Duenes, J. A., Thomforde, G. M., and Carryer, P. W., Intestinal transit of solid and liquid components of a meal in health, Gastroenterology,87, 1255, 1984.PubMedGoogle Scholar
  118. 118.
    Williams, J. W., Antivesicant compounds and clotting impregnated therewith, U. S. Patent 2,649,389, 1953.Google Scholar
  119. 119.
    Speck, J. W., Polycholar-7,8-disubstituted - 2,5-diimino glycoluril for use as an antivesicant, U. S. Patent 2,885,305, 1959.Google Scholar
  120. 120.
    Regoeczi, E., Iodogen-catalyzed iodination of transferrin, Int J Pept Protein Res, 22, 422, 1983.PubMedGoogle Scholar
  121. 121.
    Salacinski, P. R. p., McLean, C, Sykes, J. E. C, Clement-Jones, V. v., and Lowry, P. J., Iodination of proteins and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3α, 6 α-diphenyl glycoluril (iodogen), Anal Biochem, 117, 136, 1981.PubMedGoogle Scholar
  122. 122.
    Davidson, S. J., Hughes, W. L., and Barnwell, A., Renal protein absorption into sub-cellular particles.I. Studies with intact kidneys and fractionated homogenates, Exp Cell Res, 67, 171, 1971.PubMedGoogle Scholar
  123. 123.
    Markwell, M. A. K. and Fox, C. F., Surface specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3α, 6α-diphenylglycoluril,Biochemistry, 17, 4807, 1978.PubMedGoogle Scholar
  124. 124.
    Tuszynski, G. P., Knight, L. C., Kornecki, E., and Srivastava, S., Labeling of platelet surface proteins with 125I by the iodogen method, Anal Biochem, 130, 166, 1983.PubMedGoogle Scholar
  125. 125.
    Nieuwenhuizen, W., Emeis, J. J., Vermond, A., Kurver, P., and Van der Heide, D., Studies on the catabolism and distribution of fibrinogen in rats. Application of the iodogen labelling technique, Biochem Biophys Res Commun, 97, 49, 1980.PubMedGoogle Scholar
  126. 126.
    Parker, K. C. and Strominger, J. L., Localization of the sites of iodination of human ß2-microglobulin:quaternary structure implications for histocompatibility antigens, Biochemistry, 22, 1145, 1983.PubMedGoogle Scholar
  127. 127.
    Sullivan, K. H. and Williams, R. P., Use of iodogen and iodine-125 to label the outer membrane proteins of whole cells of Neisseria gonorrhoeae, Anal Biochem, 120, 254, 1982.PubMedGoogle Scholar
  128. 128.
    Low, D. A. and Cunningham, D. D., A novel method for measuring cell surface-bound thrombin. Detection of iodination-induced changes in thrombin-binding affinity, J Biol Chem, 257, 850, 1982.PubMedGoogle Scholar
  129. 129.
    Skinningsrud, A. and Nustad, K., Prostatic acid purification and iodination using iodogen,Clin Chim Acta, 120, 29, 1982.PubMedGoogle Scholar
  130. 130.
    Magun, B. E., Planck, S. R., Matrisian, L. M., and Finch, J. S., Binding, internalization and intracellular processing of 130I-epidermal growth factor purified by isoelectric focusing, Biochem Biophys Res Commun, 108, 299, 1982.PubMedGoogle Scholar
  131. 131.
    Knight, L. C., Budzynski, A. Z., and Olexa, S. A., Radiolabeling of fibrinogen using the Iodogen technique, Thromb Haemost. 46, 593,1981.PubMedGoogle Scholar
  132. 132.
    Kulkarni, P. V., Lewis, S. E., McConnell, J., Buja, L. M., Wilson, J. E., Willerson, J. T., and Parkey, R. W., Iodine-123-labeled radiotracers for car-diovascular and testicular imaging studies: labeling of phenyl fatty acids for myocardial studies, fibronectin for thrombus localization, and human chorionic gonodotropin for testicular studies, in USDOE CONF-820523 (DE82008258), Paras, P. and Thiessen, J. W., Eds., Office of Scientific and Technical Information, 1985, 462.Google Scholar
  133. 133.
    Burnett, J. C., Jr., Kao, P. C., Hu, D. C., Heser, D. W., Heublein, D., Granger, J. P., Opgenorth, T. J., and Reeder, G. S., Atrial natriuretic peptide elevation in congestive heart failure in the human, Science. 231, 1145, 1986.PubMedGoogle Scholar
  134. 134.
    Bolton, A. E. and Hunter, W. M., The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent, Biochem J, 133, 529, 1973.PubMedGoogle Scholar
  135. 135.
    Wood, F. T., wu, M. M., and Gerhart, J. C., The radio-active labeling of proteins with an iodinated amidination reagent, Anal Biochem, 69, 339, 1975.PubMedGoogle Scholar
  136. 136.
    Rudinger, J. and Ruegg, U., Preparation of N-succinimidyl 3-(4-hydroxyphenyl)propionate, Biochem J, 133, 538, 1973.PubMedGoogle Scholar
  137. 137.
    Bolton, A. E.and Hunter, W. M., A new method for labelling protein hormones with radioiodine for use in the radioimmunoassay (abstract), J Endocrinol, 55, xxx, 1972.PubMedGoogle Scholar
  138. 138.
    Bolton, A. E., Bennie, J. G., and Hunter, W. M., Innovations in labelling techniques for radioimmuno-assays,Protides Biol Fluids. Proc Collog. 24, 687, 1976.Google Scholar
  139. 139.
    Wood, F. T., Radioactive labeling of proteins with an iodinated amidination reagent, J Dent Res, 54 (Spec Iss C), C86, 1975.PubMedGoogle Scholar
  140. 140.
    Assoian, R. K., Blix, P. M., Rubenstein, A. H., and Tager, H. S., Iodotyrosylation of peptides using tertiary-butyloxy carbonyl-L-[125I]iodotyrosine N-hydroxysuccinimide ester, Anal Biochem, 103, 70, 1980.PubMedGoogle Scholar
  141. 141.
    Berg, H. C. and Hirsh, D., Synthesis of diazotized [35S] sulfanilic acid of high specific activity: a label for the outer surface of cell membranes, Anal Biochem, 66, 629, 1975.PubMedGoogle Scholar
  142. 142.
    Carraway, K. L., Covalent labeling of membranes, Biochim Biophys Acta, 415, 379, 1975.PubMedGoogle Scholar
  143. 143.
    George, J. N., Potterf, R. D., Lewis, P. C., and Sears, D. A., Studies on platelet plasma membranes. I. Characterization of surface proteins of human platelets labeled with diazotized (125I) -diiodosul fanilic acid, J Lab Clin Med, 88, 232, 1976.PubMedGoogle Scholar
  144. 144.
    George, J. N., Lewis, P. C., and Sears, D. A., Studies on platelet plasma membranes. II. Characterization of surface proteins of rabbit platelets in vitro and during circulation in vivo using diazotized (125I) - diiodosulfanilic acid as a label, J Lab Clin Med, 88, 247, 1976.PubMedGoogle Scholar
  145. 145.
    Sia, C. L. and Horecker, B. L., Dissociation of protein subunits by maleylation, Biochem Biophys Res Commun, 31, 731, 1968.PubMedGoogle Scholar
  146. 146.
    Berg, H. C, Sulfanilic acid diazonium salt: a label for the outside of the human erythrocyte membrane, Biochim Biophys Acta, 183, 65, 1969.PubMedGoogle Scholar
  147. 147.
    Sears, D. A., Reed, C. F., and Helmkamp, R. W., A radioactive label for the erythrocyte membrane, Biochim Biophys Acta, 233, 716, 1971.PubMedGoogle Scholar
  148. 148.
    Sears, D. A., Prehemolytic changes in membrane protein of incubated human erythrocytes, J Lab Clin Med, 82, 719, 1973.PubMedGoogle Scholar
  149. 149.
    Der-Balian, G. P., Imidoester iodination of immunoglobulins to high specific activity, Anal Biochem, 106, 411, 1980.PubMedGoogle Scholar
  150. 150.
    Srivastava, P. C, Knapp, F. F., Jr., Karl, D. W., and Mills, D. C. B., N-(p-iodophenyl)maleimide, a new radioiodinated thiol reagent with selective effects on platelet membrane functions (abstract), J Nucl Med, 27, 1046, 1986.Google Scholar
  151. 151.
    Tubis, M., Parsons, K., Endow, J. S., Rawalay, S. S., and Crandall, P. H., The preparation of labeled carbohydrates for biomedical uses, J Nucl Med, 8, 551, 1967.PubMedGoogle Scholar
  152. 152.
    Brooks, S. A., Davies, J. W. L., Graber, I. G., and Ricketts, C. R., Labelling of inulin with radioactive iodine, Nature (London). 188, 675, 1960.Google Scholar
  153. 153.
    Buchali, K., Herzmann, H., Strangfeld, D., and Schneider, G., Stability of inulin labeled with iodine-131, Isotopenpraxis, 3, 229, 1967.Google Scholar
  154. 154.
    Lambrecht, R. M. and Wolf, A. P., Cyclotron production of radiohalogens and their use in excitation labelling, in Int Symp Radiopharmaceuticals, Subramanian, G., Rhodes, B. A., Cooper, J. F., and Sodd, V. J., Eds., Society of Nuclear Medicine, New York, 1975, 111.Google Scholar
  155. 155.
    Lambrecht, R. M., Mantescu, C., Redvanly, C., and Wolf, A. P., Preparation of high-purity carrier-free 123I-iodine monochloride as iodination reagent for synthesis of radiopharmaceuticals, IV, J Nucl Med, 13, 266, 1972.PubMedGoogle Scholar
  156. 156.
    Loberg, M. D. and Welch, M. J., Reactions of recoil iodine formed by the 123’Xe->123’I system with simple hydrocarbons: effects of additives on the reactivity,J Am Chem Soc. 95, 1075, 1973.Google Scholar
  157. 157.
    Loberg, M. D., Krohn, K. A., and Welch, M. J.,Reactions of recoil iodine formed by the 123Xe->123I system with simple hydrocarbons. II. Pressure studies on the methane and ethane systems, J Am Chem Soc, 95, 5496, 1973.Google Scholar
  158. 158.
    Lambrecht, R. M. and Wolf, A. P., The cyclotron and short-lived halogen isotopes for radiophar-maceutical applications, in Radiopharmaceuticals and Labelled Compounds (Proceedings), Vol. 1, Symp. New Developments in Radiopharmaceuticals and Labelled Compounds, Copenhagen, March 26 to 30, 1973, International Atomic Energy Agency, Vienna, 1973, 275.Google Scholar
  159. 159.
    Welch, M. J., Labeling with iodine-123: the reactivity of iodine-12 3 formed by the decay of xenon-123 (letter to the editor), J Am Chem Soc, 92, 408, 1970.PubMedGoogle Scholar
  160. 160.
    Elias, H., Riess, R., and Müller, K., Markierung aromatischer Jodide durch strahlungs indunzierten Isotopenaustausch, Naturwissenschaften, 54, 114, 1967.Google Scholar
  161. 161.
    El-Garhy, M. and Stöcklin, G., A novel method of labelling biomolecules with 123I and 125I, Radiochem Radioanal Lett, 18, 281, 1974.Google Scholar
  162. 162.
    Masouredis, S. P., Shimkin, M. B., McMillan, J. A., and Fox, S. W., Distribution of radioactivity in tissues of normal and tumor-bearing mice following intravenous administration of radioiodotetrazolium salt, J Natl Cancer Inst, 11, 91, 1950.PubMedGoogle Scholar
  163. 163.
    Olah, G. A. and Melby, E. G., Onium ions. III. Alkylarylhalonium ions, J Am Chem Soc, 94, 6220, 1972.Google Scholar
  164. 164.
    Vernois, J., Abdel Ghani, A. H., and Muxart, R., Reactions of iodine-125 atoms with liquid monofluoro-benzene,Radiochem Radioanal Lett, 12, 7, 1972.Google Scholar
  165. 165.
    Muxart, R., Vernois, J., and Strapelias, H., Reactions of iodine-123 atoms with benzene in the liquid phase, Radiochim Acta, 21, 88, 1974.Google Scholar
  166. 166.
    Sloviter, H. A., Preparation of a radioactive oxazine dye, Science, 110, 687, 1949.PubMedGoogle Scholar
  167. 167.
    Jensen, J. A. and Pearce, G. W., Synthesis of radioactive parathion using S35, J Am Chem Soc, 74, 3184, 1952.Google Scholar
  168. 168.
    Elias, H., Radiation induced exchange labeling of aromatic halides, in Proc 9th Jpn Conf Radioisotopes,Nippon Genshiryoku Sangyo Kaigi, Tokyo, 1970, 538.Google Scholar
  169. 169.
    Elias, H., Arnold, C., and Kloss, G., Preparation of 131I-labelled m-iodohippuric acid and its behaviour in kidney function studies compared to o-iodohippuric acid, Int J Appl Radiat Isot, 24, 463, 1973.PubMedGoogle Scholar
  170. 170.
    Elias, H. and Lotterhos, H. F., Notiz über eine neue Methode zur Radiojod-Markierung durch Halogenaustausch in Acitamid-Schmelzen, Chem Ber, 109, 1580, 1976.Google Scholar
  171. 171.
    Thakur, M. L. and Walters, S. L., Evaluation of a method for the preparation of high specific activity radioiodinated oestradiol, Int J Appl Radiat Isot, 27, 585, 1976.PubMedGoogle Scholar
  172. 172.
    Westera, G. and van Gijlswijk, H. J. M., Radio-io - dination of aromatic-compounds with I-123 and I-131 by exchange, J Labelled Compd Radiopharm, 16, 174, 1979.Google Scholar
  173. 173.
    Seevers, R. H., Schwendner, S. W., Swayze, S. L., and Counsell, R. E., Potential organ - or tumor-imaging agents. 22. Acyl-labeled cholesterol esters,J Med Chem, 25, 618, 1982.PubMedGoogle Scholar
  174. 174.
    Mangner, T. J., Wu, J. L., Wieland, D. M., and Beierwaltes, W. H., A new radioiodide exchange technique: the MW2 method (abstract), J Nucl Med, 22, P12, 1981.Google Scholar
  175. 175.
    Mangner, T. J., Wu, J. L., and Wieland, D. M., Solid-phase exchange radioiodination of aryl iodides.Facilitation by ammonium sulfate, J Org Chem, 47, 1484, 1982.Google Scholar
  176. 176.
    Bakker, C. N. M. and Kaspersen, F. M., Labeling of 4-alkylamino-iodoquinolines with radioactive iodine by isotopic exchange, J Labelled Compd Radiopharm, 16, 917, 1979.Google Scholar
  177. 177.
    Travis, J., Garner, D., and Bowen, J., Human a-1 - antichymotrypsin: purification and properties, Biochemistry, 17, 5647, 1978.PubMedGoogle Scholar
  178. 178.
    Osuga, D. T. and Feeney, R. E., Antifreeze glycop - roteins from arctic fish, J Biol Chem, 253, 5338, 1978.PubMedGoogle Scholar
  179. 179.
    Kurachi, K., Schmer, G., Hermodson, M. A., Teller, D. C, and Davie, E. W., Characterization of human, bovine, and horse antithrombin III, Biochemistry, 15, 368, 1976.PubMedGoogle Scholar
  180. 180.
    Pannell, R., Johnson, D., and Travis, J., Isolation and properties of human plasma a-1-proteinase inhibitor, Biochemistry, 13, 5439, 1974.PubMedGoogle Scholar
  181. 181.
    Roll, D., Aguanno, J. J., Coffee, C. J., Glew, R. H., and Iammarino, R. M., Comparison of the carbohydrate and amino acid composition of normal and S-variant a-1-antitrypsin, Biochim Biophys Acta, 532, 171, 1978.PubMedGoogle Scholar
  182. 182.
    Dalton, J. B. and Schmidt, C. L. A., The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molal volumes, J Biol Chem, 103, 549, 1933.Google Scholar
  183. 183.
    Dawson, R. M. C., Elliott, D. C., Elliott, W. H., and Jones, K. M., Data for Biochemical Research, 2nd ed., Oxford University Press, New York, 1969, 38.Google Scholar
  184. 184.
    Martin, R. B., Edsall, J. T., Wetlaufer, D. B., and Hollingworth, B. R., A complete ionization scheme for tyrosine, and the ionization constants of some tyrosine derivatives, J Biol Chem, 233, 1429, 1958.PubMedGoogle Scholar
  185. 185.
    Wetlaufer, D. B., Edsall, J. T., and Hollingworth, B. R., Ultraviolet difference spectra of tyrosine groups in proteins and amino acids, J Biol Chem, 233, 1421, 1958.PubMedGoogle Scholar
  186. 186.
    Mayberry, W. E. and Bertoli, D. A., Kinetics of iodination. II. General base catalysis in the iodination of N-acetyl-L-tyrosine and N-acetyl-3 - iodo-L-tyrosine, J Ora Chem, 30, 2029, 1965.Google Scholar
  187. 187.
    Mayberry, W. E., Rall, J. E., Berman, M., and Bertoli, D., Kinetics of iodination. III. Iodination of N-acetyl-L-tyrosine and N-acetyl-3-iodo-L - tyrosine studied in a pH-stat system, Biochemistry, 4, 1965, 1965.Google Scholar
  188. 188.
    Edelhoch, H., The properties of thyroglobulin. VIII. The iodination of thyroglobulin, J Biol Chem, 237, 2778, 1962.Google Scholar
  189. 189.
    Gemmill, C. L., The apparent ionization constants of the phenolic hydroxyl groups of thyroxine and related compounds, Arch Biochem Biophys, 54, 359, 1955.PubMedGoogle Scholar
  190. 190.
    Mayberry, W. E., Rall, J. E., and Bertoli, D., Kinetics of iodination. I. A comparison of the kinetics of iodination of N-acetyl-L-tyrosine and N-acetyl-3-iodo-L-tyrosine, J Am Chem Soc, 86, 5302, 1964.Google Scholar
  191. 191.
    Edelhoch, H., Spectroscopic determination of tryp - tophan and tyrosine in proteins, Biochemistry, 6, 1948, 1967.PubMedGoogle Scholar
  192. 192.
    Cueni, L. and Riordan, J. F., Functional tyrosyl residues of carboxypeptidase A. The effect of protein structure on the reactivity of tyrosine-1 - 98, Biochemistry, 17, 1834, 1978.PubMedGoogle Scholar
  193. 193.
    Sokolovsky, M., Riordan, J. F., and Vallee, B. L., Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins, Biochem Biophvs Res Commun, 27, 20, 1967.Google Scholar
  194. 194.
    Mayberry, W. E., Rall, J. E., and Bertoli, D., Kinetics of iodination. IV. A comparison of the kinetics of iodination of L-tyrosine and some derivatives, Biochemistry, 4, 2606, 1965.PubMedGoogle Scholar
  195. 195.
    Grovenstein, E., Jr. and Kilby, D. C., Kinetic isotope effect in the iodination of 2, 4, 6-trideut - erophenol (letter to the editor), J Am Chem Soc, 79, 2972, 1957.Google Scholar
  196. 196.
    Grovenstein, E., Jr. and Aprahamian, N. S., Aromatic halogenation. II. The kinetics and mechanism of iodination of 4-nitrophenol and 4-nitrophenol - 2/6-d2, J Am Chem Soc, 84, 212, 1962.Google Scholar
  197. 197.
    Mayberry, W. E. and Hockert, T. J., Kinetics of iodination. VI. Effect of solvent on hydroxyl ionization and iodination of L-tyrosine and 3-iod - o-L-tyrosine, J Biol Chem, 245, 697, 1970.PubMedGoogle Scholar
  198. 198.
    Miller, W. H., Anderson, G. W., Madison, R. K., and Salley, D. J., Exchange reactions of diiodoty - rosine, Science, 100, 340, 1944.PubMedGoogle Scholar
  199. 199.
    Tong, W., Taurog. A., and Chaikoff, I. L., The metabolism of I131 -labeled diiodotyrosine, J Biol Chem, 207, 59, 1954.PubMedGoogle Scholar
  200. 200.
    Hunt, S. and Breuer, S. W., Isolation of a new naturally occurring halogenated amino acid: mono - chloromonobromo-tyrosine, Biochim Biophys Acta, 252, 401, 1971.PubMedGoogle Scholar
  201. 201.
    Seed, R. H. and Goldberg, I. H., Biosynthesis of thyroglobulin. II. Role of subunits, iodination, and ribonucleic acid synthesis, J Biol Chem, 240, 764, 1965.PubMedGoogle Scholar
  202. 202.
    Sellin, H. G. and Goldberg, I. H., Biosynthesis of thyroglobulin. III. Intracellular localization and properties of labeled thyroid proteins, J Biol Chem, 240, 774, 1965.PubMedGoogle Scholar
  203. 203.
    Pitt-Rivers, R. and Cavalieri, R. R., The free odo - tyrosines of the rat thyroid gland, Biochem J, 86, 86, 1963.PubMedGoogle Scholar
  204. 204.
    Werner, S. C. and Radichevich, I., Presence of iodine-127 iodotyrosines in extracts of normal human serum, Nature (London), 197, 877, 1963.Google Scholar
  205. 205.
    Stolc, V., Release of monoiodotyrosine and iodopr - otein from human leukocytes, J Clin Endocrinol Metab, 37, 397, 1973.PubMedGoogle Scholar
  206. 206.
    Hallaba, E., El-Asrag, H., and Zeid, Y. A., 131I - Labelling of tyrosine by iodine monochloride, Int J Appl Radiat Isot, 21, 107, 1970.PubMedGoogle Scholar
  207. 207.
    Hadi, U. A. H., Malcolme-Lawes, D. J., and Oldham, G., The preparation and isolation of carrier-free radio-iodotyrosine, Int J Appl Radiat Isot, 28, 747, 1977.PubMedGoogle Scholar
  208. 208.
    Mayer, R., Toulme, R., Montenay-Garestier, T., and Helene, C., The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides, J Biol Chem, 254, 75, 1979.PubMedGoogle Scholar
  209. 209.
    Inoue, M., Shibata, M., Kondo, Y., and Ishida, T., Role of tryptophanyl and tyrosyl residues of flav - oproteins in binding with flavin coenzymes. X-ray structural studies using model complexes, Biochemistry.20, 2936, 1981.PubMedGoogle Scholar
  210. 210.
    Previero, A., Cavadore, J.-C, Torreilles, J., and Coletti-Previero, M.-A., Specific sulfonation of tyrosine, tryptophan and hydroxy-amino acids in peptides, Biochim Biophys Acta, 581, 276, 1979.PubMedGoogle Scholar
  211. 211.
    Krajewski, T. and Blombäck, B., The location of tyrosine-O-sulphate in fibrinopeptides, Acta Chem Scand, 22, 1339, 1968.PubMedGoogle Scholar
  212. 212.
    Blombäck, B. and Sjöquist, J., Studies on fibrino - peptides from different species, Acta Chem Scand, 14, 493, 1960.Google Scholar
  213. 213.
    Bettelheim, F. R., Tyrosine-O-sulfate in a peptide from fibrinogen, J Am Chem Soc, 76, 2838, 1954.Google Scholar
  214. 214.
    Jevons, F. R., Tyrosine O-sulphate in fibrinogen and fibrin, Biochem J, 89, 621, 1963.PubMedGoogle Scholar
  215. 215.
    Huttner, W. B., Sulphation of proteins-a widespread modification of proteins, Nature (London), 299, 273, 1982.Google Scholar
  216. 216.
    Greengard, P., Phosphorylated proteins as physiological effectors. Protein phosphorylation may be a common pathway for many biological regulatory agents, Science, 199, 146, 1978.PubMedGoogle Scholar
  217. 217.
    Harrington, W. F., The liberation of acid and base binding groups on denaturation of ovalbumin, Bioc - him Biophys Acta, 18, 450, 1955.Google Scholar
  218. 218.
    Giancotti, V., Quadrifoglio, F., Cowgill, R. W., and Crane-Robinson, C, Fluorescence of buried tyrosine residues in proteins, Biochim Biophys Acta, 624, 60, 1980.PubMedGoogle Scholar
  219. 219.
    Johannsen, B., Competitive investigations of the iodine-131 reaction with beta-lactoglobulin and serum albumin, Isotopenpraxis, 4, 185, 1968.Google Scholar
  220. 220.
    Friedman, M. E. and Scheraga, H. A., Iodination of ribonuclease in the presence of cytidine 3’-phosphate,Biochim Biophys Acta, 128, 576, 1966.Google Scholar
  221. 221.
    Dube, S. K., Roholt, 0. A., and Pressman, D., Relative reactivity to iodination of tyrosine residues in a-chymotrypsin, J Biol Chem, 241, 4665, 1966.PubMedGoogle Scholar
  222. 222.
    Dube, S. K., Roholt, 0. A., and Pressman, D., Identification of the most rapidly iodinating tyrosine residue in a-chymotrypsin, J Biol Chem, 239, 3347, 1964.PubMedGoogle Scholar
  223. 223.
    Sigler, P. B., Iodination of a single tyrosine in crystals of a-chymotrypsin, Biochemistry, 9, 3609, 1970.PubMedGoogle Scholar
  224. 224.
    Hashizume, H. and Imahori, K., Physico-chemical characterization of tyrosyl residues in α-chymotr - ypsinogen and π-chymotrypsin, J Biochem (Tokyo) , 58, 60, 1965.Google Scholar
  225. 225.
    Glazer, A. N. and Sanger, F., The iodination of chymotrypsinogen, Biochem J, 90, 92, 1964.PubMedGoogle Scholar
  226. 226.
    Li, C. H., Kinetics of reactions between iodine and histidine, J Am Chem Soc, 66, 225, 1944.Google Scholar
  227. 227.
    Brunings, K. J., Preparation and properties of the iodohistidines, J Am Chem Soc, 69, 205, 1947.PubMedGoogle Scholar
  228. 228.
    Wolff, J. and Covelli, I., Factors in theiodination of histidine in proteins, Eur J Biochem. 9, 371, 1969.PubMedGoogle Scholar
  229. 229.
    Vaughan, J. D., Jewett, G. L., and Vaughan, V. L., Kinetics of iodination of 1-alkylpyrazoles. Relative electrophilic reactivities of 1-substituted and 1-unsubstituted pyrazoles, J Am Chem Soc, 89 , 6218, 1967.Google Scholar
  230. 230.
    Covelli, I. and Wolff, J., The histidyl residues of insulin.I. Reactivity toward iodine, J Biol Chem, 242, 881, 1967.PubMedGoogle Scholar
  231. 231.
    Covelli, I. and Wolff, J., Iodohistidine formation in ribonuclease A, J Biol Chem, 241, 4444, 1966.PubMedGoogle Scholar
  232. 232.
    Berson, S. A. and Yalow, R. S., Radioimmunoassay in gastroenterology, Gastroenterology, 62, 1061, 1972.PubMedGoogle Scholar
  233. 233.
    Holohan, K. N., Murphy, R. F., Flanagan, R. W. J., Buchanan, K. D., and Elmore, D. T., Enzymic iodination of the histidyl residue of secretin: a radioimmunoassay of the hormone, Biochim Biophys Acta, 322, 178, 1973.PubMedGoogle Scholar
  234. 234.
    Covelli, I. and Wolff, J., Iodination of the normal and buried tyrosyl residues of lysozyme. I. Chroma-tographic analysis, Biochemistry, 5, 860, 1966.PubMedGoogle Scholar
  235. 235.
    Fraenkel-Conrat, H., The essential groups of lysozyme,with particular reference to its reaction with iodine, Arch Biochem, 27, 109, 1950.PubMedGoogle Scholar
  236. 236.
    Krohn, K. A., Knight, L. C., Harwig, J. F., and Welch, M. J., Differences in the sites ofiodination of proteins following four methods of radioiodina - tion, Biochim Biophys Acta, 490, 497, 1977.PubMedGoogle Scholar
  237. 237.
    Koshland, M. E., Englberger, F. M., Erwin, M. J., and Gaddone, S. M., Modification of amino acid residues in anti-p-azobenzenearsonic acid antibody during extensive iodination, J Biol Chem, 238, 1343, 1963.PubMedGoogle Scholar
  238. 238.
    Benesch, R. E. and Benesch, R., The mechanism of disulfide interchange in acid solution; role of sulfenium ions, J Am Chem Soc, 80, 1666, 1958.Google Scholar
  239. 239.
    Trundle, D. and Cunningham, L. W., Iodine oxidation of the sulfhydryl groups of creatine kinase, Biochemistry, 8, 1919, 1969.PubMedGoogle Scholar
  240. 240.
    Jirousek, L. and Pritchard, E. T., On the chemical iodination of tyrosine with protein sulfenyl iodide and sulfenyl periodide derivatives: the behavior of thiol protein-iodine systems, Biochim Biophys Acta, 243, 230, 1971.PubMedGoogle Scholar
  241. 241.
    Torchinskii, Yu. M., Sulfhydryl and disulfide groups of proteins: translated from Russian by Dixon, H. B. F., Plenum Press, New York, 1974, 7.Google Scholar
  242. 242.
    Ryle, A. P. and Sanger, F., Disulphide interchange reactions, Biochem J, 60, 535, 1955.PubMedGoogle Scholar
  243. 243.
    Cunningham, L. W. and Nuenke, B. J., Physical and chemical studies of a limited reaction of iodine with proteins, J Biol Chem, 234, 1447, 1959.PubMedGoogle Scholar
  244. 244.
    Cunningham, L. W. and Nuenke, B. J., Liberation of hydrogen ions and pH dependence of a protein-iodine reaction, J Biol Chem, 236, 1716, 1961.PubMedGoogle Scholar
  245. 245.
    Nelander, B., A calorimetric study on donor-acceptor complexes between some disulfides and iodine, Acta Chem Scand, 20, 2289, 1966.Google Scholar
  246. 246.
    Nelander, B., UV-Absorption spectra of complexes between some disulfides and iodine. II., Acta Chem Scand, 23, 2136, 1969.Google Scholar
  247. 247.
    Shinohara, K., Oxidation of cystine by iodine in aqueous medium, J Biol Chem, 96, 285, 1932.Google Scholar
  248. 248.
    Ramachandran, L. K., Protein-iodine interaction, Chem Rev, 56, 199, 1956.Google Scholar
  249. 249.
    Little, C. and O’Brien, P. J., Products of oxidation of a protein thiol group after reaction with various oxidizing agents, Arch Biochem Biophys, 122, 406, 1967.PubMedGoogle Scholar
  250. 250.
    Clamp, J. R. and Hough, L., The periodate oxidation of amino acids with reference to studies on glycoproteins, Biochem J, 94, 17, 1965.PubMedGoogle Scholar
  251. 251.
    Neumann, N. P., Moore, S., and Stein, W. H., Modification of the methionine residues in ribonucl - ease, Biochemistry, 1, 68, 1962.PubMedGoogle Scholar
  252. 252.
    Glaser, C. B. and Li, C. H., Reaction of bovine growth hormone with hydrogen peroxide, Biochemistry, 13, 1044, 1974. 253. Caldwell, K. A. and Tappel, A. L., Reactions of seleno-and sulfoamino acids with hydroperoxides, Biochemistry, 3, 1643, 1964.Google Scholar
  253. 254.
    Lavine, T. F., An iodometric determination of methionine, J Biol Chem, 151, 281, 1943.Google Scholar
  254. 255.
    Brill, A. S. and Weinryb, I., Reactions of horseradish peroxidase with Azide. Evidence for a methionine residue at the active site, Biochemistry, 6, 3528, 1967.PubMedGoogle Scholar
  255. 256.
    Brown, B. L. and Reith, W. S., A method of radio - iodination on a submicrogram scale. The preparation and stability of 131I - and 125I-labelled 3-monoiodotyrosine and 3, 5-diiodotyrosine of very high specific activity, Biochim Biophys Acta, 148, 423, 1967.PubMedGoogle Scholar
  256. 257.
    Esch, F. S. and Allison, W. S., Identification of a tyrosine residue at a nucleotide binding site in the subunit of the mitochondrial ATPase with E-fluorosulfonyl[14C]-benzoyl-5’ -adenosine, J Biol Chem, 253, 6100, 1978.PubMedGoogle Scholar
  257. 258.
    Fattoum, A., Kassab, R., and Pradel, L.-A., Effects of iodination and acetylation of tyrosyl residues on the activity and structure of arginine kinase from lobster muscle, Eur J Biochem, 22, 445, 1971.PubMedGoogle Scholar
  258. 259.
    Simpson, R. T. and Vallee, B. L., Enzymic properties of iodinated carboxypeptidase A (abstract), Fed Proc, 22,493, 1963.Google Scholar
  259. 260.
    Cantley, L. C., Jr., Gelles, J., and Josephson, L., Reaction of (Na-K) ATPase with 7-chloro-4-nitroben - zo-2-oxa-l,3-diazole: evidence for an essential tyrosine at the active site, Biochemistry, 17, 418, 1978.PubMedGoogle Scholar
  260. 261.
    Mains, G., Burchell, R. H., and Hofmann, T., Identification of the iodine-sensitive tyrosines in porcine pepsin, Biochem Biophys Res Commun, 54, 275, 1973.PubMedGoogle Scholar
  261. 262.
    Rao, S. P. and Dunn, B. M., Conformation of pepsin and pepsinogen: some aspects of the role of tyrosine residues and the 1–44 segment of pepsinogen on conformational stability, Arch Biochem Biophys, 207, 135, 1981.PubMedGoogle Scholar
  262. 263.
    Layne, P. P. and Najjar, V. A., Evidence for a tyrosine residue at the active site of phosphoglu - comutase and its interaction with vanadate, Proc Natl Acad Sci USA, 76, 5010, 1979.PubMedGoogle Scholar
  263. 264.
    Rathnam, P. and Saxena, B. B., Studies on modification of tryptophan, methionine, tyrosine and arginine residues of human follicle-stimulating hormone and its subunits, Biochim Biophys Acta, 576, 81, 1979.PubMedGoogle Scholar
  264. 265.
    Klostergaard, J., Mayers, G. L., Grossberg, A. L., and Pressman, D., Effect of iodination on ligand binding by protein 315; designation of a highly reactive light chain tyrosine as a contact residue, Immunochemistry, 15, 225, 1978.PubMedGoogle Scholar
  265. 266.
    Charlwood, P. A., Hatton, M. W. C., and Regoeczi, E., On the physicochemical and chemical properties of -acid glycoproteins from mammalian and avian plasmas, Biochim Biophys Açta, 453, 81, 1976.PubMedGoogle Scholar
  266. 267.
    Peters, T., Jr., Serum albumin, in The Plasma Proteins: Structure, Function, and Genetic Control, Vol. 1, 2nd Ed., Putnam, F. W., Ed., Academic Press, New York, 1975, 133.Google Scholar
  267. 268.
    Scanu, A. M., Edelstein, C., and Keim, P., Serum lipoproteins, in The Plasma Proteins; Structure, Function, and Genetic Control, Vol. 1, 2nd Ed., Putnam, F. W., Ed., Academic Press, New York, 1975, 317.Google Scholar
  268. 269.
    Rydén, L. and Björk, I., Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase), Biochemistry, 15, 3411, 1976.PubMedGoogle Scholar
  269. 270.
    Haupt, H., Heimburger, N., Kranz, T., and Schwick, H. G., Ein Beitrag zur Isolierung und Charak - terisierung des CL-Inaktivators aus Humanplasma, Eur J Biochem, 17, 254, 1970.PubMedGoogle Scholar
  270. 271.
    Calcott, M. A. and Müller-Eberhard, H. J., Clq protein of human complement, Biochemistry, 11, 3443, 1972.PubMedGoogle Scholar
  271. 272.
    Valet, G. and Cooper, N. G., Isolation and characterization of the proenzyme form of the Cls subunit of the first complement component, J Immunol, 112, 339, 1974.PubMedGoogle Scholar
  272. 273.
    Kerr, M. A., Limited proteolysis of complement components C2 and factor B. Structural analogy and limited sequence homology, Biochem J, 183, 615, 1979.PubMedGoogle Scholar
  273. 274.
    Budzko, D. B., Bokisch, V. A., and Müller-Eberhard, H. J., A fragment of the third component of human complement with anaphylatoxin activity, Biochemistryl0, 1166, 1971.Google Scholar
  274. 275.
    Gigli, I., von Zabern, I., and Porter, R. R., The isolation and structure of C4, the fourth component of human complement, Biochem J, 165, 439, 1977.PubMedGoogle Scholar
  275. 276.
    Tack, B. F., Morris, S. C., and Prahl, J. W., Fifth component of human complement: purification from plasma and polypeptide chain structure, Biochemistry18. 1490, 1979.PubMedGoogle Scholar
  276. 277.
    Podack, E. R., Kolb, W. P., Esser, A. F., and Müller-Eberhard, H. J., Structural similarities between C6 and C7 of human complement, J Immunol, 123, 1071, 1979.PubMedGoogle Scholar
  277. 278.
    Kinoshita, T., Hong, K., Kondo, K., and Inoue, K., Eighth component of guinea pig complement: purification and characterization, Mol Immunol, 19, 589, 1982.PubMedGoogle Scholar
  278. 279.
    Biesecker, G. and Müller-Eberhard, H. J., The ninth component of human complement: purification and physicochemical characterization, J Immunol, 124,1291, 1980.PubMedGoogle Scholar
  279. 280.
    Oliveira, E. B., Gotschlich, E. C., and Liu, T.-Y., Primary structure of human C-reactive protein, J Biol Chem, 254, 489, 1979.PubMedGoogle Scholar
  280. 281.
    Esnouf, M. P. and Jobin, F., The isolation of factor V from bovine plasma, Biochem J, 102, 660, 1967.PubMedGoogle Scholar
  281. 282.
    Radcliffe, R. and Nemerson, Y., Bovine factor VII, Methods Enzymol, 45, 49, 1976.PubMedGoogle Scholar
  282. 283.
    Broze, G. J. and Majerus, P. W., Purification and properties of human coagulation factor VII, J Biol Chem, 255, 1242, 1980.PubMedGoogle Scholar
  283. 284.
    Di Scipio, R. G., Kurachi, K., and Davie, E. W., Activation of human factor IX (Christmas factor), J Clin Invest, 61, 1528, 1978.PubMedGoogle Scholar
  284. 285.
    Fujikawa, K., Legaz, M. E., and Davie, E. W., Bovine factors X1 and X2 (Stuart factor). Isolation and characterization, Biochemistry, 11, 4882, 1972.PubMedGoogle Scholar
  285. 286.
    Koide, T., Kato, H., and Davie, E. W., Isolation and characterization of bovine factor XI (plasma thrombo-plastin antecedent), Biochemistry,16, 2279, 1977.PubMedGoogle Scholar
  286. 287.
    Kurachi, K. and Davie, E. W., Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa(activated Hageman factor) , Biochemistry, 16, 5831, 1977.PubMedGoogle Scholar
  287. 288.
    Fujikawa, K., Walsh, K. A., and Davie, E. W., Isolation and characterization of bovine factor XII (Hageman factor), Biochemistry, 16, 2270, 1977.PubMedGoogle Scholar
  288. 289.
    Yachnin, S., Hsu, R., Heinrikson, R. L., and Miller,J. B., Studies on human a-fetoprotein. Isolation and characterization of monomeric and polymeric forms and amino-terminal sequence analysis, Biochim Biophys Acta, 493, 418, 1977.PubMedGoogle Scholar
  289. 290.
    Spiro, M. J. and Spiro, R. G., Composition of the peptide portion of fetuin, J Biol Chem, 237, 1507, 1962.PubMedGoogle Scholar
  290. 291.
    Mihalyi, E. and Godfrey, J. E., Digestion of fibrinogen by trypsin. II. Characterization of the large fragment obtained, Biochim Biophys Acta, 67, 90, 1963.PubMedGoogle Scholar
  291. 292.
    Cartwright, T. and Kekwick, R. G. O., A comparative study of human, cow, pig and sheep fibrinogen, Biochim Biophys Acta, 236, 550, 1971.PubMedGoogle Scholar
  292. 293.
    Doolittle, R. F., Cassman, K. G., Cottrell, B. A., Friezner, S. J., Hucko, J. T., and Takagi, T., Amino acid sequence studies on the a chain of human fibrinogen. Characterization of 11 cyanogen bromide fragments, Biochemistry, 16, 1703, 1977.PubMedGoogle Scholar
  293. 294.
    Watt, K. W. K., Takagi, T., and Doolittle, R. F., Amino acid sequence of the chain of human fibrinogen,Biochemistry, 18, 68, 1979.PubMedGoogle Scholar
  294. 295.
    Watt, K. W. K., Takagi, T., and Doolittle, R. F., Amino acid sequence of the chain of human fibrinogen:homology with the chain, Proc Natl Acad Sci USA, 75, 1731, 1978.PubMedGoogle Scholar
  295. 296.
    Mosesson, M. W., Chen, A. B., and Huseby, R. M., The cold-insoluble globulin of human plasma: studies of its essential structural features, Biochim Biophys Acta, 386, 509, 1975.PubMedGoogle Scholar
  296. 297.
    Heimburger, N., Heide, K., Haupt, H., and Schultze, H.E., Bausteinanalysen von Humanserumproteinen, Clin Chim Acta, 10, 293, 1964.PubMedGoogle Scholar
  297. 298.
    Hrkal, Z. and Muller-Eberhard, U., Partial characterization of the heme-binding serum glycoproteins rabbit and human hemopexin, Biochemistry, 10, 1746, 1971.PubMedGoogle Scholar
  298. 299.
    Heimburger, N., Haupt, H., Kranz, T., and Baudner, S., Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose, II. Physikalisch-chemische und immunologische Charakterisierung eines histidinreichen 3 , 8S-α2-Glykoproteins, Hoppe-Sevler’s Z Phvsiol Chem, 353, 1133, 1972.Google Scholar
  299. 300.
    Takahashi, N., Tetaert, D., Debuire, B., Lin, L.-C, and Putnam, F. W., Complete amino acid sequence of the heavy chain of human immunoglobulin D, Proc Natl Acad Sci USA, 79, 2850, 1982.PubMedGoogle Scholar
  300. 301.
    Kochwa, S., Terry, W. D., Capra, J. D., and Yang, N. L., Structural studies ofimmunoglobulin E. I. Physico-chemical studies of the IgE molecule, Ann NY Acad Sci, 190, 49, 1971.PubMedGoogle Scholar
  301. 302.
    Suzuki, T. and Deutsch, H. F., Dissociation, reaggregation,and subunit structure studies of some human M-globulins, J Biol Chem, 242, 2725, 1967.PubMedGoogle Scholar
  302. 303.
    Lebreton de Vonne, T., Got, R., Mouray, H., Etude biochimique de l’ α2-macroglobuline de serum de lapin: preparation et proprietes physico-chimiques, Int J Biochem, 6, 99, 1975.Google Scholar
  303. 304.
    Hall, P. K. and Roberts, R. C., Physical and chemical properties of human plasma α2-macroglobulin, Biochem J,173, 27, 1978.PubMedGoogle Scholar
  304. 305.
    Ekström, B. and Berggård, I., Human al-microglobulin.Purification procedure, chemical and physicochemical properties, J Biol Chem, 252, 8048, 1977.PubMedGoogle Scholar
  305. 306.
    Berggård, I. and Beam, A. G., Isolation and properties of a low molecular weight ß2-globulin occurring in human biological fluids, J Biol Chem, 243, 4095, 1968.PubMedGoogle Scholar
  306. 307.
    Moroi, M. and Aoki, N., Isolation and characterization of α2-plasmin inhibitor from human plasma, J Biol Chem, 251, 5956, 1976.PubMedGoogle Scholar
  307. 308.
    Collen, D., De microheterogeneitet van human plasminogen,Doctoraatsproefschrift, Leuven, 1973.Google Scholar
  308. 309.
    Wiman, B. and Wallén, P., Activation of human plasminogen by an insoluble derivative of urokinase:structural changes of plasminogen in the course of activation to plasmin and demonstration of a possible intermediate compound, Eur J Biochem, 36, 25, 1973.PubMedGoogle Scholar
  309. 310.
    Deuel, T. F., Keim, P. S., Farmer, M., and Heinrikson,R. L., Amino acid sequence of human platelet factor 4, Proc Natl Acad Sci USA. 74, 2256, 1977.PubMedGoogle Scholar
  310. 311.
    Kanda, Y., Goodman, D. S., Canfield, R. E., and Morgan, F. J., The amino acid sequence of human plasma prealbumin, J Biol Chem, 249, 6796, 1974.PubMedGoogle Scholar
  311. 312.
    Minta, J. 0. and Lepow, I. H., Studies on the sub-unit structure of human properdin, Immunochemistry,11, 361, 1974.PubMedGoogle Scholar
  312. 313.
    Stenflo, J., A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization, J Biol Chem, 251, 355, 1976.PubMedGoogle Scholar
  313. 314.
    DiScipio, R. G. and Davie, E. W., Characterization of protein S, a γ-carboxyglutamic acid containing protein from bovine and human plasma, Biochemistry, 18, 899, 1979.PubMedGoogle Scholar
  314. 315.
    Downing, M. R., Butkowski, R. J., Clark, M. M., and Mann, K. G., Human prothrombin activation, J Biol Chem, 250, 8897, 1975. 316.PubMedGoogle Scholar
  315. 316.
    Rask, L., Anundi, H., and Peterson, P. A., The primary structure of the human retinol-binding protein, FEBS Lett, 104, 55, 1979.PubMedGoogle Scholar
  316. 317.
    Schmid, K., Mao, S. K. Y., Kimura, A., Hayashi, S., and Binette, J. P., Isolation and characterization of a serine-threonine-rich galactoglycoprotein from normal human plasma, J Biol Chem, 255, 3221, 1980.PubMedGoogle Scholar
  317. 318.
    Butkowski, R. J., Elion, J., Downing, M. R., and Mann, K. G., Primary structure of human prethrombin 2 and α-thrombin, J Biol Chem, 252, 4942, 1977.PubMedGoogle Scholar
  318. 319.
    Gershengorn, M. C, Cheng, S.-Y., Lippoldt, R. E., Lord, R. S., and Robbins, J., Characterization of human thyroxine-binding globulin. Evidence for a single polypeptide chain, J Biol Chem, 252, 8713, 1977.PubMedGoogle Scholar
  319. 320.
    Bouillon, R., Van Baelen, H., Rombauts, W., and De Moor, P., The purification and characterisation of the human-serum binding protein for the 25-hydrox-ycholecalciferol (transcalciferin). Identity with group-specific compounds, Eur J Biochem, 66, 285, 1976.PubMedGoogle Scholar
  320. 321.
    Allen, R. H. and Majerus, P. W., Isolation of vitamin B12 binding proteins using affinity chromatography.III. Purification and properties of human plasma transcobalamin II, J Biol Chem, 247, 7709, 1972.PubMedGoogle Scholar
  321. 322.
    Le Gaillard, F., Han, K.-K., and Dautrevaux, M., Caractérisation et propriétés physico-chimiques de la transcortine humaine, Biochimie, 57, 559, 1975.PubMedGoogle Scholar
  322. 323.
    Sutton, M. R. and Brew, K., Purification and character-ization of the seven cyanogen bromide fragments of human serum transferrin, Biochem J, 139, 163, 1974.PubMedGoogle Scholar
  323. 324.
    Baldwin, R. M. and Lin, T. H., Chlorination as a side reaction in radioiodination with chloramine-T, J Radioanal Chem, 65, 163, 1981.Google Scholar
  324. 325.
    Bakker, C. N. M. and Kaspersen, F. M., The electrophilic iodination with 131I of N1-substituted uracils using chloramine-T as oxidant, Int J Appl Radiat Isot, 32, 176, 1981.Google Scholar
  325. 326.
    Stagg, B. H., Temperley, J. M., Rochman, H., and Morley, J. S., Iodination and the biological activity of gastrin, Nature (London), 228, 58, 1970.Google Scholar
  326. 327.
    Wood, W. G., Wachter, C., and Scriba, P. C, Comparison of I-125-labeling of polypeptides using chloramine-T and 1,3,4,6-tetrachloro-3-alpha, 6alpha-diphenyl-glycoluril (iodogen) with subsequent separation of odide and labeled protein on cation-exchange dextran, Fres Z Anal Chem, 301, 119, 1980.Google Scholar
  327. 328.
    Alexander, N. M., Oxidation and oxidative cleavage of tryptophanyl peptide bonds during iodination, Biochem Biophys Res Commnun, 54, 614, 1973.Google Scholar
  328. 329.
    Alexander, N. M., Oxidative cleavage of tryptophanyl peptide bonds during chemical - and peroxidase-catalyzed iodinations, J Biol Chem, 249, 1946, 1974.PubMedGoogle Scholar
  329. 330.
    Schorn, H. and Winkler, C., Dünnschichtchromatografie zur Analyse von Schildd-rüsenhormonen, J Chromatogr, 18, 69, 1965.PubMedGoogle Scholar
  330. 331.
    Hearn, M. T. W., Hancock, W. S., and Bishop, C. A., High-pressure liquid chromatography of amino acids, peptides and proteins. V. Separation of thyroidal iodo-amino acids by hydrophilic ion-paired reversedphase high-performance liquid chromatography,J Chromatogr, 157, 337, 1978.PubMedGoogle Scholar
  331. 332.
    Von Stetten, O. and Schlett, R., Purification of 125I-labelled compounds by high-performance liquid chromatography with on-line detection, J Chromatoar,254, 229, 1983.Google Scholar
  332. 333.
    Seidah, N. G., Dennis, M., Corvol, P., Rochemont, J., and Chrétien, M., A rapid high-performance liquid chromatography purification method of iodinated polypeptide hormones, Anal Biochem, 109, 185, 1980.PubMedGoogle Scholar
  333. 334.
    Pitt-Rivers, R. and Schwartz, H. L., Iodoaminoacids and related compounds, in Chromatoqraphic and Electro-phoretic Techniques, Vol. 1, 3rd Ed., Smith, I., Ed., W. Heinemann, London, 1969, 224.Google Scholar
  334. 335.
    Postmes, Th. J. L. J., Differentiation between iodine and non-iodine spots on paper chromatograms during the microquantitative determination of the iodinated amino acids of human serum, Clin Chim Acta, 10, 581, 1964.Google Scholar
  335. 336.
    Row, V. V., Volpé, R., and Ezrin, C., 127I-Iodotyrosine-like compounds in normal human serum, Clin Chim Acta, 13, 666, 1966.PubMedGoogle Scholar
  336. 337.
    Taurog, A., Spontaneous deiodination of I131-labeled thyroxine and related iodophenols on filter paper, Endocrinology, 73, 45, 1963.PubMedGoogle Scholar
  337. 338.
    Fisher, D. A., Artifactual deiodination during cellulose-starch thin layer chromatography, J Clin Endocrinol Metab, 28, 717, 1968.PubMedGoogle Scholar
  338. 339.
    West, C. D., Wayne, A. W., and Chavré, V. J., Thin-layer chromatography for thyroid hormones, Anal Biochem, 12,41, 1965.PubMedGoogle Scholar
  339. 340.
    Regoeczi, E. and Bolyos, M., Labelled amino acids produced by trace-labelling plasma proteins with iodine: a survey, Int J Appl Radiat Isot, 32, 241, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Mrinal K. Dewanjee
    • 1
    • 2
    • 3
  1. 1.Radiopharmaceutical LaboratoryUSA
  2. 2.Jackson Memorial Medical Center and University of Miami Hospital and ClinicsUSA
  3. 3.Surgery and Biomedical EngineeringUniversity of Miami School of MedicineUSA

Personalised recommendations