Skip to main content

Immunotherapy of breast cancer

  • Chapter
Adjuvant Therapy of Breast Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 60))

Abstract

Rapid advances have been made in understanding and manipulating the immune response in health and disease. The two most important achievements were the development of techniques to immortalize antibody secreting cells to produce monoclonal antibodies and the cloning and artificial production of cytokines. Now that these immune system components can be produced homogeneously and in large quantities, clinical trials are under way to determine whether they are applicable to the care of breast cancer patients. At present, we are just beginning to see interpretable results of studies in patients with metastatic breast cancer, and there are few data available from adjuvant trials. This review will discuss the immune augmenting agents, cytokines, and monoclonal antibodies that have been tested or are soon to be evaluated for breast cancer and will discuss the prospects and challenges for future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dillman RO, Koziol JA, Zavanelli MI, et al. Immunoincompetance in cancer patients. Assessment by in vitro stimulation and quantification of lymphocyte subpopulations. Cancer 53:1484, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Frankel AE, Boyer CM, and Bast RC. Immunobiology of human breast cancer. In: Immunology of Malignant Diseases, V Byers and RW Baldwin, (eds). MTP Press, London, 1987, p. 167.

    Chapter  Google Scholar 

  3. Ludwig CU, Hartmann D, Landmann R, et al. Unaltered immunocompetence in patients with nondisseminated breast cancer at the time of diagnosis. Cancer 55:1673, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Teasdale C, Hughes LE, Whitehead RH, and Newcombe RG. Factors affecting pretreatment immune competence in cancer patients. I. The effects of age, sex and ill health. Cancer Immunol Immunother 6:89, 1979.

    Article  Google Scholar 

  5. Stein JA, Adler A, Ben-Efraim S, and Maor M. Immunocompetence, immunosuppression and human breast cancer. I. An analysis of their relationship by known measures of cell-mediated immunity in well-defined clinical stages of disease. Cancer 38:1171, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham TJ, Daut D, Wolfgang PE, et al. A correlation of DNCB-induced delayed cutaneous hypersensivity reactions and the course of disease in patients with recurrent breast cancer. Cancer 37:1696, 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Mandeville R, Lamoureaux G, and Legault-Poisson S. Biological markers and breast cancer. A multiparametric study. II. Depressed immune competence. Cancer 50:1280, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Shukla HS, Hughes LE, Whitehead RH, and Newcombe RC. Long-term (5–11 years) follow-up of general immune competance in breast cancer I. Pre-treatment levels with reference to micrometastases. Cancer Immunol Immunother 21:1, 1986.

    PubMed  CAS  Google Scholar 

  9. Krown SE, Pinsky CM, Wanebo HJ, Braun DW, Wong PP, and Oettgen HF. Immunologic reactivity and prognosis in breast cancer. Cancer 46:1746, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Papatestas AE and Kark AE. Peripheral lymphocyte counts in breast carcinoma. An index of immune competence. Cancer 34:2014, 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Owenby HE, Roi LD, Isenberg RR, and Brennan MJ. Peripheral lymphocyte and eosinophil counts as indicators of prognosis in primary breast cancer. Cancer 52:126, 1983.

    Article  Google Scholar 

  12. Rotstein S, Blomgren H, Petrini B, Wasserrman J, Nilsson B, and Baral E. Blood lymphocyte counts with subset analysis in operable breast cancer. Cancer 56:1413, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell AM, McCormack MA, Ross CA, and Leake RE. Immunological analysis of the specificity of the autologous humoral response in breast cancer patients. Br J Cancer 53:7, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Guillou PJ, Ramsden CW, Somers SS, and Sedman PJ. Suppression of the generation of lymphokine-activated killer (LAK) cells by serum-free supernatants of in vitro maintained tumour cell lines. Br J Cancer 59:515, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Bukh A, Aguado MT, Krarup N, Poulsen HS, Nordentoft AM, and Müller NP. A prospective study of circulating immune complexes in patients with breast cancer. Int J Cancer 41:364, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Salinas FA, Wee KH, and Ceriani RL. Significance of carcinoma-associated antigens as a monitor of tumor burden: Characterization by monoclonal antibodies. Cancer Res 47:907, 1987.

    PubMed  CAS  Google Scholar 

  17. Iaffaioli RV, Bianchin A, Ruggiero G, et al. Prognostic significance of circulating immune complexes in a long-term follow-up of breast cancer patients. Oncology 45:337, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Fuchs C, Krapf F, Kern P, Hoferichter S, Jager W, and Kalden JR. CEA-containing immune complexes in sera of patients with colorectal and breast cancer — analysis of complexed immunoglobulin classes. Cancer Immunol Immunother 26:180, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. McCoy JL, Jerome JF, Dean JH, et al. Inhibition of leukocyte migration by tumor-associated antigens in soluble extracts of human breast carcinoma. J Natl Cancer Inst 53:11, 1974.

    PubMed  CAS  Google Scholar 

  20. McFarland JK, Thomson DM, Phelan K, Shenouda G, and Scanzano R. Predictive value of tube leukocyte adherance inhibition (LAI) assay for breast, colorectal, stomach and pancreatic cancer. Cancer 49:1185, 1982.

    Article  Google Scholar 

  21. Vose BM and White W. Tumour-reactive lymphocytes stimulated in mixed lymphocyte and tumour culture. Clonal analysis of effector cells in cytotoxic and proliferative assays. Cancer Immunol Immunother 15:227, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Grimm LA, Vose BM, Chu EW, et al. The human mixed lymphocyte-tumor cell interaction test. I. Positive autologous lymphocyte proliferative responses can be stimulated by tumor cells as well as by cells from normal tissues. Cancer Immunol Immunother 17:83, 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Cannon GB, Dean JH, Heberman RB, Keels M, and Alford C. Lymphoproliferative responses to autologous tumor extracts as prognostic indicators in patients with resected breast cancer. Cancer 27:131, 1981.

    CAS  Google Scholar 

  24. Cannon GB, McCoy JL, Jerome LJ, et al. Immunologic relationship between breast carcinoma and benign disease as detected by the leukocyte migration inhibition test. J Natl Cancer Inst 61:1181, 1978.

    PubMed  CAS  Google Scholar 

  25. Tsang PH, Roboz JP, Holland JF, and Bekesi JG. Effector lymphocyte response to homologous tumor antigens in various stages of malignant disease as monitored by leukocyte adherence inhibition — cell mediated immunity (LAI-CMI). Immunol Lett 17:63, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Fulton A, Heppner G, Roi L, Howard L, Russo J, and Brennan M. Relationship of natural killer cytotoxicity to clinical and biochemical parameters of primary human breast cancer. Br Cancer Res Treat 4:109, 1984.

    Article  CAS  Google Scholar 

  27. Eremin O, Ashby L, and Stephens JP. Human natural cytotoxicity in the blood and lymphoid organs of healthy donors and patients with malignant disease. Int J Cancer 21:35, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Hortobaygi GN, Gutterman JU, Blumenschein GR, et al. Combination chemoimmunotherapy of metastatic breast cancer with 5-fluorouracil, Adriamycin, cyclophosphamide and BCG. Cancer 43:1225, 1979.

    Article  Google Scholar 

  29. Bast RC, Zbar B, Borsos T, and Rapp JH. BCG and cancer. N Engl J Med 290:1413, 1974.

    Article  PubMed  Google Scholar 

  30. Garas J, Besbeas S, Papamatheakis J, et al. Attempt with immunotherapy to control metastatic skin nodules from breast cancer by BCG. Panminerva Med 17:193, 1975.

    PubMed  CAS  Google Scholar 

  31. Hortobagyi GN, Buzdar AU, Frye D, et al. Combined antiestrogen and cytotoxic therapy with Pseudomonas vaccine immunotherapy for metastatic breast cancer. A prospective, randomized trial. Cancer 60:2596, 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Aisner J, Weinberg V, Perloff M, et al. Chemotherapy versus chemoimmunotherapy (CAF v CAFVP v CMF each +/-MER) for metastatic carcinoma of the breast: A CALGB study. Cancer and Leukemia Group B. J Clin Oncol 5:1523, 1987.

    PubMed  CAS  Google Scholar 

  33. Pluzanska A, Pluverer G, Stempczynska J, et al. Local immunotherapy with Propionibacterium granulosum KP-45 in advanced breast cancer. Anticancer Res 5:521, 1985.

    PubMed  CAS  Google Scholar 

  34. Hubay CA, Gordon NH, Crowe JP, et al. Antiestrogen-cytotoxic chemotherapy and bacillus Calmette-Guerin vaccination in stage II breast cancer: Seventy-two-month follow-up. Surgery 96:61, 1984.

    PubMed  CAS  Google Scholar 

  35. Buzdar AU, Hortobagyi GN, Marcus CE, Smith TL, Martin R, and Gehan EA. Results of adjuvant chemotherapy trials in breast cancer at M.D. Anderson Hospital and Tumor Institute. NCI Monogr 1986:81, 1986.

    Google Scholar 

  36. Giuliano AE, Sparks FC, Patterson K, Spears I, and Morton DL. Adjuvant chemoimmunotherapy in Stage II carcinoma of the breast. J Surg Oncol 31:255, 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss RB, Korzun AH, Tormey DC, et al. Adjuvant chemotherapy for breast carcinoma using CMFVP versus CMF-MER: The nine year results for patients with 1–3 axillary nodes. In: Adjuvant Therapy of Cancer, SE Salmon (ed.) Grune & Stratton, Orlando, 1987, p. 327.

    Google Scholar 

  38. Tormey DC, Weinberg VE, Holland JF, et al. A randomized trial of five and three drug chemotherapy and chemoimmunotherapy in women with operable node positive breast cancer. J Clin Oncol 1:138, 1983.

    PubMed  CAS  Google Scholar 

  39. Amery WK, Spreafico F, and Rojas AF. Adjuvant treatment with levamisole in cancer. A review of experimental and clinical data. Cancer Treat Rev 4:167, 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Moertel CG, Fleming TR, MacDonald JS, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322:352, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Klefstrom P, Holsti P, Grohn P, Heinonen E, and Holsti L. Levamisole in the treatment of stage II breast cancer. Five-year follow-up of a randomized double-blind study. Cancer 55:2753, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Schreml W, Betzier M, Lang M, et al. Adjuvant intermittent chemo-immunotherapy of breast cancer. A prospective study. In: Breast Cancer — Experimental and Clinical Aspects, HT Mourisden and Palshof (eds). Pergamon Press, 1980, p. 165.

    Google Scholar 

  43. Treurniet F, Donker A, Meischke D, de Jongh M, and van Putten W. Levamisole as adjuvant immunotherapy in breast cancer. Cancer 59:1590, 1987.

    Article  Google Scholar 

  44. Schreml W, Lang M, Betzier M, et al. Adjuvant chemo(immuno-)-therapy of primary breast cancer with Adriamycin-cyclophosphamide (and levamisole) — six-year evaluation. Eur J Cancer Clin Oncol 19:607, 1983.

    Article  PubMed  CAS  Google Scholar 

  45. Brincker H, Mouridsne HT, Andersen KW, et al. Increased breast-cancer recurrence rate after adjuvant therapy with levamisole. Lancet 824, 1980.

    Google Scholar 

  46. Kay RG, Mason BH, Stephens EJ, et al. Levamisole in primary breast cancer. A controlled study in conjunction with L-phenylalanine mustard. Cancer 51:1991, 1983.

    Article  Google Scholar 

  47. Gutterman JU, Alexanian GR, et al. Leukocyte interferon induced tumor regression in human metastatic breast cancer, multiple myeloma and malignant lymphoma. Ann Intern Med 96:549, 1980.

    Google Scholar 

  48. Borden EC, Holland JF, Dao TL, et al. Leukocyte-derived interferon (alpha) in human breast carcinoma. Ann Intern Med 97:1, 1982.

    PubMed  CAS  Google Scholar 

  49. Muss HB, Kempf RA, Martino S, et al. A phase 2 study of recombinant alpha interferon in patients with recurrent or metstatic breast cancer. J Clin Oncol 2:1012, 1984.

    PubMed  CAS  Google Scholar 

  50. Goldstein D and Laszlo J. Interferon therapy in cancer: From imaginon to interferon. Cancer Res 46:4315, 1986.

    PubMed  CAS  Google Scholar 

  51. Kirkwood JM and Ernstoff MS. Interferons in the treatment of human cancer. J Clin Oncol 2:336, 1984.

    PubMed  CAS  Google Scholar 

  52. Buzdar A, Hortobagyi G, Kau S, et al. Escalating dose-intensive adjuvant therapy with doxorubicin and cyclophosphamide in Stage II or III breast cancer with or without alpha-interferon. A prospective randomized trial. Proc Am Soc Clin Oncol 8:28, 1989.

    Google Scholar 

  53. Fentiman IS, Balkwill FR, Thomas BS, Russell MJ, Todd I, and Bottazzo GF. An autoimmune aetiology for hypothyroidism following interferon therapy for breast cancer. Eur J Cancer Clin Oncol 24:1299, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein D, Bushmeyer SM, Witt PL, Jordan VC, and Borden EC. Effects of type I and II interferons on cultured human breast cells: Interaction with estrogen receptors and with tamoxifen. Cancer Res 49:2698, 1989.

    PubMed  CAS  Google Scholar 

  55. Silver HK, Connors JM, Kong S, Karim KA, and Spinelli JJ. Survival, response and immune effects in a prospectively randomized study of dose strategy for alpha-N1 interferon. Br J Cancer 58:783, 1988.

    Article  PubMed  CAS  Google Scholar 

  56. Dollbaum C, Creasey AA, Dairkee SH, et al. Specificity of tumor necrosis factor toxicity for human carcinomas relative to normal mammary epithelium and correlation with response to doxorubicin. Proc Natl Acad Sci USA 85:4740, 1988.

    Article  PubMed  CAS  Google Scholar 

  57. Stone-Wolff DS, Yip YK, Kelker HC, et al. Interrelationships of human interferon-gamma with lymphotoxin and monocyte cytotoxin. J Exp Med 159:828, 1984.

    Article  PubMed  CAS  Google Scholar 

  58. Malivanova TF, Litvinov SV, Plevaya EB, and Kryukova IN. Detection in the blood serum of breast cancer patients of circulating immune complexes containing antigens showing common epitopes with structural proteins of mouse mammary tumour virus (MMTV). Acta Virol (Praha) 32:129, 1988.

    CAS  Google Scholar 

  59. Terman DS, Yamamoto T, Mattioli M, et al. Extensive necrosis of spontaneous canine mammary adenocarcinoma after extracorporeal perfusion over Staphylococcus aureus cowans II. Description of acute tumoricidal response: Morphologic, histologic, immunohistochemical, immunologic, and serologic findings. J Immunol 124:795, 1980.

    PubMed  CAS  Google Scholar 

  60. Holohan TV, Phillips TM, Bowles C, and Deisseroth A. Regression of canine mammary carcinoma after immunoadsorption therapy. Cancer Res 42:3663, 1982.

    PubMed  CAS  Google Scholar 

  61. Terman DS, Young JB, Shearer WT, et al. Preliminary observations of the effects on breast adenocarcinoma of plasma perfused over immobilized protein A. N Engl J Med 305:1195, 1981.

    Article  PubMed  CAS  Google Scholar 

  62. Bensinger WI, Kinet JP, Hennen G, et al. Plasma perfused over immobilized Protein A for breast cancer (letter). N Engl J Med 306:935, 1982.

    Google Scholar 

  63. Messerschmidt GL, Henry DH, Snyder HW, et al. Protein immunotherapy in the treatment of cancer: An update. Semin Hematol 26:19, 1989.

    PubMed  CAS  Google Scholar 

  64. Young JB, Ayus JC, Miller LK, et al. Cardiopulmonary toxicity in patients with breast carcinoma during plasma perfusion over immobilized protein A. Am J Med 75:278, 1983.

    Article  PubMed  CAS  Google Scholar 

  65. Ainsworth SK, Pilia PA, Pepkowitz SH, and O’Brien P. Toxicity following protein A treatment of metastatic breast adenocarcinoma. Cancer 61:1495, 1988.

    Article  PubMed  CAS  Google Scholar 

  66. Lotze MT, Grimm EA, Mazumder A, Strausser JL, and Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 41:4420, 1981.

    PubMed  CAS  Google Scholar 

  67. Grimm E, Mazumder A, Zhang HZ, and Rosenberg SA. The lymphokine-activated killer cell phenomenon: Lysis of NK-resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823, 1982.

    Article  PubMed  CAS  Google Scholar 

  68. Adler A, Stein JA, Kedar E, Naor D, and Weiss DW. Intralesional injection of interleukin-2-expanded autologous lymphocytes in melanoma and breast cancer patients: A pilot study. J Biol Response Mod 3:491, 1984.

    PubMed  CAS  Google Scholar 

  69. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Rosenberg S, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 316:889, 1987.

    Article  PubMed  CAS  Google Scholar 

  71. West WH, Tauer KW, Yannelli JR, et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316:898, 1987.

    Article  PubMed  CAS  Google Scholar 

  72. Fisher RI, Coltman CA, Doroshow JH, et al. Metastatic renal cancer treated with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 108:518, 1988.

    PubMed  CAS  Google Scholar 

  73. Dutcher JP, Creekmore S, Weiss GR, et al. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol 7:477, 1989.

    PubMed  CAS  Google Scholar 

  74. Cohen PJ, Lotze MT, Roberts JR, Rosenberg SA, and Jaffe ES. The immunopathology of sequential tumor biopsies in patients treated with interleukin-2. Am J Pathol 129:208, 1987.

    PubMed  CAS  Google Scholar 

  75. Damle NK, Doyle LV, Bender JR, and Bradley EC. Interleukin 2-activated human lymphocytes exhibit enhanced adhesion to normal vasular endothelial cells and cause their lysis. J Immunol 138:1779, 1987.

    PubMed  CAS  Google Scholar 

  76. Margolin KA, Rayner AA, Hawkins MJ, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: Analysis of toxicity and management guidelines. J Clin Oncol 7:486, 1989.

    PubMed  CAS  Google Scholar 

  77. Klempner MS, Noring R, Mier JW, and Atkins MB. An acquired defect in neutrophils from patients receiving interleukin-2 immunotherapy. N Engl J Med 322:959, 1990.

    Article  PubMed  CAS  Google Scholar 

  78. Schoof DD, Gramolini BA, Davidson DL, Massaro AF, Wilson RE, and Eberlein TJ. Adoptive immunotherapy of human cancer using low-dose recombinant interleukin 2 and lymphokine-activated killer cells. Cancer Res 48:5007, 1988.

    PubMed  CAS  Google Scholar 

  79. Eberlein TJ, Schoof DD, Jung S, et al. A new regimen of interleukin-2 and lymphokine-activated killer cells. Arch Intern Med 148:2571, 1988.

    Article  PubMed  CAS  Google Scholar 

  80. Eberlein TJ, Schoof DD, Massaro AF, Burger U, Wilmore DW, and Wilson RE. Ibuprofen causes reduced toxicity of IL-2 administration in patients with metastatic cancer. Arch Surg 124:542, 1989.

    Article  PubMed  CAS  Google Scholar 

  81. Darrow TL, Slingluff CL, and Seigler HF. The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes. J Immunol 142:3329, 1989.

    PubMed  CAS  Google Scholar 

  82. Itoh K, Platoucas CD, and Balch CM. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. J Exp Med 168:1419, 1988.

    Article  PubMed  CAS  Google Scholar 

  83. Stötter H, Wiebke EA, Tomita S, et al. Cytokines alter target cell susceptibility to lysis. J Immunol 142:1767, 1989.

    PubMed  Google Scholar 

  84. Topalian SL, Solomon D, and Rosenberg SA. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714, 1989.

    PubMed  CAS  Google Scholar 

  85. Ting C, Hargrove ME, and Yun YS. Augmentation by anti-T3 antibody of the lymphokine-activated killer cell-mediated cytotoxicity. J Immunol 141:741, 1988.

    PubMed  CAS  Google Scholar 

  86. Hercend T, Reinherz EL, Meuer S, Schlossman SF, and Ritz J. Phenotypic and functional heterogeneity of human cloned natural killer cell lines. 301:158, 1983.

    CAS  Google Scholar 

  87. Herberman RB. Lymphokine-activated killer cell activity. Immunol Today 8:178, 1987.

    Article  Google Scholar 

  88. Peace DJ and Cheever MA. Toxicity and therapeutic efficacy of high-dose interleukin 2. J Exp Med 169:161, 1989.

    Article  PubMed  CAS  Google Scholar 

  89. Kranz DM, Tonegawa S, and Eisen HN. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci USA 81:7922, 1984.

    Article  PubMed  CAS  Google Scholar 

  90. Liu MA, Vranz DM, Kurnick JT, Boyle LA, Levy R, and Eisen HN. Heteroantibody duplexes that target cells for lysis by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 82:8648, 1985.

    Article  PubMed  CAS  Google Scholar 

  91. Perez P, Hoffman RW, Shaw S, Bluestone JA, and Segal DM. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature 316:354, 1985.

    Article  PubMed  CAS  Google Scholar 

  92. Perez P, Hoffman RW, Titus JA, and Segal DM. Specific targeting of human peripheral blood T cells by heteroaggregates containing anti-T3 crosslinked to anti-target cell antibodies. J Exp Med 163:166, 1986.

    Article  PubMed  CAS  Google Scholar 

  93. Perez P, Titus GA, Lotze MT, et al. Specific lysis of human tumor cells coated with anti-T3 cross-linked to anti-tumor antibody. J Immunol 137:2069, 1986.

    PubMed  CAS  Google Scholar 

  94. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, and Segal DM. Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 138:4018, 1987.

    PubMed  CAS  Google Scholar 

  95. Scott CJ, Lambert JM, Kalish RS, Morimoto C, and Schlossman SF. Human T cells can be directed to lyse tumor targets through the alternative activation/T11-E rosette receptor pathway. J Immunol 140:8, 1988.

    PubMed  CAS  Google Scholar 

  96. Schlom J, Colcher D, Hand PH, et al. Monoclonal antibodies reactive with breast tumor-associated antigens. Adv Cancer Res 43:143, 1985.

    Article  PubMed  CAS  Google Scholar 

  97. Burchell JM and Taylor-Papadimitroiu J. Monoclonal antibodies to breast cancer and their application. In: Monoclonal Antibodies for Cancer Detection and Therapy. Academic Press, London, 1985, p. 1.

    Google Scholar 

  98. Thor A, Weeks MO, and Schlom J. Monoclonal antibodies and breast cancer. Semin Oncol 13:393, 1986.

    PubMed  CAS  Google Scholar 

  99. Muraro R, Kuroki M, Wunderlich D, et al. Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res 48:4588, 1988.

    PubMed  CAS  Google Scholar 

  100. Hilkens J, Kroezen V, Bonfrer JMG, de Jong-Bakker M, and Bruning PF. MAM-6 antigen, a new serum marker for breast cancer monitoring. Cancer Res 46:2582, 1986.

    PubMed  CAS  Google Scholar 

  101. Athanassiou A, Pectasides D, Pateniotis K, et al. Immunoscintigraphy with 131I-labelled HMFG2 and HMFG1 F(ab’)2 in the pre-operative detection of clinical and subclinical lymph node metastases in breast cancer patients. Int J Cancer Suppl 3:89, 1988.

    Article  PubMed  CAS  Google Scholar 

  102. Hayes DF, Sekine H, Ohno T, Abe M, Keefe K, and Kufe DW. Use of a murine monoclonal antibody for detection of circulating plasma DF3 antigen levels in breast cancer patients. J Clin Invest 75:1671, 1984.

    Article  Google Scholar 

  103. Colcher D, Horan Hand P, Nuti M, and Schlom J. A spectrum of monoclonal antibodies reactive with human mammary tumor cells. Proc Natl Acad Sci USA 78:3199, 1981.

    Article  PubMed  CAS  Google Scholar 

  104. Kline TS, Lundy J, and Lozowski M. Monoclonal antibody B72.3. An adjunct for evalution of suspicious aspiration biopsy cytology from the breast. Cancer 63:2253, 1989.

    Article  PubMed  CAS  Google Scholar 

  105. Martin EJ, Mojzisik CM, Hinkle GJ, et al. Radioimmunoguide surgery using monoclonal antibody. Am J Surg 156:386, 1988.

    Article  PubMed  Google Scholar 

  106. Nieroda CA, Mojzisik C, Sardi A, et al. Staging of carcinoma of the breast using a hand-held gamma detecting probe and monoclonal antibody B72.3. Surg Gynecol Obstet 169:35, 1989.

    PubMed  CAS  Google Scholar 

  107. Colcher D, Esteban J, Carrasquillo JA, et al. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res 47:4218, 1987.

    PubMed  CAS  Google Scholar 

  108. Taylor-Papadimitriou J, Peterson JA, Arklie J, Burchell J, Ceriani RL, and Bodmer WF. Monoclonal antibodies to epithelium specific components of the human milk fat globule membrane: Production and reaction with cells in culture. Int J Cancer 28:17, 1981.

    Article  PubMed  CAS  Google Scholar 

  109. Hilkens J, Buijs F, and Ligtenberg M. Complexity of MAM-6, an epithelial sialomucin associated with carcinomas. Cancer Res 49:786, 1989.

    PubMed  CAS  Google Scholar 

  110. Epenetos AA, Mather S, Granowska M, et al. Targeting of iodine-123-labelled tumour-associated monoclonal antibodies to ovarian, breast and gastrointestinal tumours. Lancet 2:999, 1982.

    Article  PubMed  CAS  Google Scholar 

  111. Malamitsi J, Skarlos D, Fotious S, et al. Intracavitary use of two radiolabeled tumor-associated monoclonal antibodies. J Nucl Med 29:1910, 1988.

    PubMed  CAS  Google Scholar 

  112. Hayes DF, Zurawski J, Vincent P, and Kufe DW. Comparison of circulating CA15-3 and carcinoembryonic antigen levels in patients with breast cancer. 4:1542, 1986.

    CAS  Google Scholar 

  113. Colomer R, Ruibal A, and Salvador L. Circulating tumor marker levels in advanced breast carcinoma correlate with the extent of metastatic disease. Cancer 64:1674, 1989.

    Article  PubMed  CAS  Google Scholar 

  114. Kufe DW, Nadler L, Sargent L, et al. Biological behavior of human breast carcinoma-associated antigens expressed during cellular proliferation. Cancer Res 43:851, 1983.

    PubMed  CAS  Google Scholar 

  115. Hakomori S. Tumor-associated carbohydrate antigens. Ann Rev Immunol 2:103, 1984.

    Article  CAS  Google Scholar 

  116. Delia Torre G, Canevari S, Orlandi R, and Colnaghi MI. Internalization of a monoclonal antibody against human breast cancer by immunoelectron microscopy. Br J Cancer 55:357, 1987.

    Article  Google Scholar 

  117. Canevari S, Orlandi R, Ripamonti M, et al. Ricin A chain conjugated with monoclonal antibodies selectively killing human carcinoma cells in vitro. J Natl Cancer Inst 75:831, 1985.

    PubMed  CAS  Google Scholar 

  118. Orlandi R, Canevari S, Conde FP, et al. Immunoconjugate generation between the ribosome inactivating protein restrictocin and an anti-human breast carcinoma MA. Cancer Immunol Immunother 26:114, 1988.

    Article  PubMed  CAS  Google Scholar 

  119. Porro G, Menard S, Tagliabue E, et al. Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients. Cancer 61:2407, 1988.

    Article  PubMed  CAS  Google Scholar 

  120. Cascinelli N, Doci R, Belli F, et al. Evaluation of toxic effects following administration of monoclonal antibody MBr1 in patients with breast cancer. Tumori 72:267, 1976.

    Google Scholar 

  121. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707, 1989.

    Article  PubMed  CAS  Google Scholar 

  122. Tandon AK, Clark GM, Chamness GC, Ullrich A, and McGuire WL. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 7:1120, 1989.

    PubMed  CAS  Google Scholar 

  123. van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239, 1988.

    Article  PubMed  Google Scholar 

  124. Slamon DJ, Clark GM, Wong SG, Levin WL, Ullrich A, and McGuire WL. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177, 1987.

    Article  PubMed  CAS  Google Scholar 

  125. Maguire HJ and Greene MI: The neu (c-erbB-2) oncogene. Semin Oncol 16:148, 1989.

    PubMed  CAS  Google Scholar 

  126. Khaw BA, Strauss HW, Cahill SL, Soule HR, Edgington T, and Cooney J. Sequential imaging of Indium-111-labeled monoclonal antibody in human mammary tumors hosted in nude mice. J Nucl Med 25:592, 1984.

    PubMed  CAS  Google Scholar 

  127. Khaw BA, Bailes JS, Schneider SL, et al. Human breast tumor imaging using 111In labeled monoclonal antibody: Athymic mouse model. Eur J Nucl Med 14:362, 1988.

    Article  PubMed  CAS  Google Scholar 

  128. Colcher D, Zalutsky M, Kaplan W, Kufe D, Austin F, and Schlom J. Radiolocalization of human mammary tumors in athymic mice by a monoclonal antibody. Cancer Res 43:736, 1983.

    PubMed  CAS  Google Scholar 

  129. Epenetos AA, Snook D, Durbin H, Johnson PM, and Taylor-Papadimitriou J. Limitation of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res 46:3183, 1986.

    PubMed  CAS  Google Scholar 

  130. Major PP, Dion AS, Williams CJ, Mattes MJ, Wang T, and Rosenthall L. Breast tumor radioimmunodetection with a 111In-labeled monoclonal antibody (MA5) against a mucin-like antigen. Cancer Res 50:927, 1990.

    Google Scholar 

  131. Hayes DF, Zalutsky MR, Kaplan W, et al. Pharmacokinetics of radiolabeled monoclonal antibody B6.2 in patients with metastatic breast cancer. Cancer Res 46:3157, 1986.

    PubMed  CAS  Google Scholar 

  132. Larson SM. Clinical radioimmunodetection, 1978–1988: Overview and suggestions for standardization of clinical trials. Cancer Res 50:892, 1990.

    Google Scholar 

  133. Tjandra JJ, Russell IS, Collins JP, et al. Immunolymphoscintigraphy for the detection of lymph node metastases from breast cancer. Cancer Res 49:1600, 1989.

    PubMed  CAS  Google Scholar 

  134. Harris DT and Mastrangelo MJ. Serotherapy of cancer. Sem Oncol 16:180, 1989.

    CAS  Google Scholar 

  135. Motta R. Passive immunotherapy of leukemia and other cancer. Adv Cancer Res 14:161, 1971.

    Article  PubMed  CAS  Google Scholar 

  136. Baker MA and Taub RN. Immunotherapy of human leukemia. Mt Sinai Med 39:548, 1972.

    CAS  Google Scholar 

  137. Currie GA. Eighty years of immunotherapy: A review of immunological methods used in the treatment of human cancer. Int J Cancer 26:141, 1972.

    CAS  Google Scholar 

  138. Rosenberg SA and Terry WD. Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25:323, 1977.

    Article  PubMed  CAS  Google Scholar 

  139. Capone PM, Papsidero LD, Croghan GA, and Chu TM. Experimental tumoricidal effects of monoclonal antibody against solid tumors. Proc Natl Acad Sci USA 80:7328, 1983.

    Article  PubMed  CAS  Google Scholar 

  140. Ceriani RL, Blank EW, and Peterson JA. Experimental immunotherapy of human breast carcinomas implanted in nude mice with a mixture of monoclonal antibodies against human milk fat globule components. Cancer Res 47:532, 1987.

    PubMed  CAS  Google Scholar 

  141. Kalofonos HP, Sackier JM, Hatzistylianou M, et al. Kinetics, quantitative analysis and radioimmunolocalization using indium-111-HMFG1 monoclonal antibody in patients with breast cancer. Br J Cancer 59:939, 1989.

    Article  PubMed  CAS  Google Scholar 

  142. Mandeville R, Pateisky N, Philipp K, Kubista E, Dumas F, and Grouix B. Immunolymphoscintography of axillary lymph node metastases in breast cancer patients using monoclonal antibodies: First clinical findings. Anticancer Res 6:1257, 1986.

    PubMed  CAS  Google Scholar 

  143. Tjandra JJ, Sacks NP, Thompson CH, et al. The detection of axillary lymph node metastases from breast cancer by radiolabeled monoclonal antibodies: A prospective study. Br J Cancer 59:296, 1989.

    Article  PubMed  CAS  Google Scholar 

  144. Bouvier JF, Pernod J, Rivoire M, and Maiassi N. Serum levels of tumor makers and presence of human antimouse antibodies: Implications for diagnosis and treatment with radiolabeled monoclonal antibodies. Cancer Detect Prev 13:251, 1988.

    PubMed  CAS  Google Scholar 

  145. Lin JY, Tserng KY, Chen CC, Lin LT, and Tung TC. Abrin and ricin: New anti-tumor substances. Nature (London) 562, 1970.

    Google Scholar 

  146. Fodstad O, Johannessen JV, Schjerven L, and Pihil A. Toxicity of Abrin and ricin in mice and dogs. J Tox Environ Health 5:1073, 1979.

    Article  CAS  Google Scholar 

  147. Fodstad O, Kvalheim G, Godal A, Aamdal S, Host H, and Pihl A. Phase 1 study of the plant protein ricin. Cancer Res 44:862, 1984.

    PubMed  CAS  Google Scholar 

  148. Blakey DC and Thorpe PE. An overview of therapy with immunotoxins containing ricin or its A-chain. Antibodies, immunoconjugates, and radiopharmaceuticals 1:1, 1988.

    CAS  Google Scholar 

  149. Vitetta ES, Fulton RJ, May RD, Till M, and Uhr JW. Redesigning nature’s poisons to create anti-tumor reagents. Science 238:1098, 1987.

    Article  PubMed  CAS  Google Scholar 

  150. Edwards DP, Grzyb KT, Dressler LG, et al. Monoclonal antibody identification and characterization of a Mr 43,000 membrane glycoprotein associated with human breast cancer. Cancer Res 46:1306, 1986.

    PubMed  CAS  Google Scholar 

  151. LeMaistre C, Edwards DP, Krolick KA, and McGuire WL. An immunotoxin cytotoxic for breast cancer cells in vitro. Cancer Res 47:730, 1987.

    PubMed  CAS  Google Scholar 

  152. Bjorn MJ, Ring D, and Frankel A. Evaluation of monoclonal antibodies for the development of breast cancer immunotoxins. Cancer Res 45:1214, 1985.

    PubMed  CAS  Google Scholar 

  153. Gould BJ, Borowitz MJ, Groves ES, et al. Phase I study of an anti-breast cancer immunotoxin by continuous infusion: Report of a targeted toxic effect not predicted by animal studies. J Natl Cancer Inst 81:775, 1989.

    Article  PubMed  CAS  Google Scholar 

  154. Bjorn MJ, Smith HS, and Dairkee SH. Response of primary human mammary tumor cell cultures to a monoclonal antibody-recombinant ricin A chain immunotoxin. Cancer Immunol Immunother 26:121, 1988.

    Article  PubMed  CAS  Google Scholar 

  155. Hoffman T. Anticipating, recognizing, and preventing hazards associated with in vivo use of monoclonal antibodies. Cancer Res 50:1049, 1990.

    Google Scholar 

  156. Bjorn MJ, Groetsema G, and Scalapino L. Antibody-Pseudomonas exotoxin A conjugates cytotoxic to human breast cancer cells in vitro. Cancer Res 46:3262, 1986.

    PubMed  CAS  Google Scholar 

  157. Avila AD, Mateo de Acosta C, and Lage A. A carcinoembryonic antigen-directed immunotoxin built by linking a monoclonal antibody to a hemolytic toxin. Int J Cancer 43:926, 1989.

    Article  PubMed  CAS  Google Scholar 

  158. Aboud PE, Lesur B, Rao KS, Baurain R, Trouet A, and Schneider YJ. Cytotoxic activity of daunorubicin or vindesin conjugated to a monoclonal antibody on cultured MCF-7 breast carcinoma cells. Biochem Pharmacol 38:641, 1989.

    Article  Google Scholar 

  159. Lacour J, Lacour F, Ducot B, et al. Therapeutic trial of poly(A). poly(U) adjuvant immunotherapy in operable cancer of the breast. Long-term results. Chirurgie 114:516, 1988.

    PubMed  CAS  Google Scholar 

  160. Nadler L, Breitmeyer J, Coral F, Spector N, and Schlossman S. Anti-B4 blocked ricin immunotherapy for patients with B cell malignancies: Phase I trial of bolus infusions. Blood 74(Suppl):121, 1989.

    Google Scholar 

  161. Heppner GH and Miller BE. Therapeutic implications of tumor heterogeneity. Semin Oncol 16:91, 1989.

    PubMed  CAS  Google Scholar 

  162. Lottich SC, Johnston WW, Szpak CA, Delong ER, A Thor, and Schlom J. Tumor-associated antigen TAG-72: Correlation of expression in primary and metastatic breast carcinoma lesions. Br Cancer Res Treat 6:49, 1985.

    Article  CAS  Google Scholar 

  163. Moss L, Greenwalt D, Cullen B, Dinh N, Ranken R, and Parry G. Cell-to-cell heterogeneity in the expression of carbohydrate-based epitopes of a mucin-type glycoprotein on the surface of human mammary carcinoma cells. J Cell Physiol 137:310, 1988.

    Article  PubMed  CAS  Google Scholar 

  164. Horan-Hand P, Nuti M, Colcher D, and Schlom J. Definition of antigenic heterogeneity and modulation among human mammary carcinoma cell populations using monoclonal antibodies to tumor-associated antigens. 728, 1983.

    Google Scholar 

  165. Zimmer AM, Rosen ST, Spies SM, et al. Radioimmunotherapy of patients with cutaneous T-cell lymphoma using an iodine-131-labeled monoclonal antibody: Analysis of retreatment following plasmspheresis. J Nucl Med 29:174, 1988.

    PubMed  CAS  Google Scholar 

  166. Jaffers GJ, Fuller TC, Cosimi AB, Russell PS, Winn HJ, and Colvin RB. Monoclonal antibody therapy: Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression. Transplantation 41:572, 1986.

    Article  PubMed  CAS  Google Scholar 

  167. Herlyn D, Wettendorff M, Schmoll E, et al. Anti-idiotype immunization of cancer patients: Modulation of the immune response. Proc Natl Acad Sci USA 84:8055, 1987.

    Article  PubMed  CAS  Google Scholar 

  168. Hafler DA, Ritz J, Schlossman SF, and Weiner HL. Anti-CD4 and anti-CD2 monoclonal antibody infusions in subjects with multiple sclerosis. Immunosuppresive effects and human anti-mouse responses. J Immunol 141:131, 1988.

    PubMed  CAS  Google Scholar 

  169. Beyers VS and Baldwin RW. Therapeutic strategies with monoclonal antibodies and immunoconjugates. Immunology 65:329, 1988.

    Google Scholar 

  170. Pimm MC, Perkins AC, Armitage MC, and Baldwin RW. The characteristics of blood-borne radiolabels and the effect of anti-mouse IgG antibodies on localization of radiolabeled monoclonal antibody in cancer patients. J Nuclear Med 26:1011, 1985.

    CAS  Google Scholar 

  171. Skaletsky E, Oh E, Rulot C, et al. A human monoclonl antibody to cytokeratin intermediate filament antigens derived from a tumor draining lymph node. Hybridoma 7:367, 1988.

    Article  PubMed  CAS  Google Scholar 

  172. Dairkee SH, Puett L, and Hackett AJ. Expression of basal and luminal epithelium-specific keratins in normal, benign, and malignant breast tissue. J Natl Cancer Inst 80:691, 1988.

    Article  PubMed  CAS  Google Scholar 

  173. Dairkee SH and Hackett AJ. Internal antigens accessible in breast cancer: Implications for tumor targeting. J Natl Cancer Inst 80:1216, 1988.

    Article  PubMed  CAS  Google Scholar 

  174. Guelstein VI, Tchypysheva TA, Ermilova VD, Litvinova LV, Troyanovsky SM, and Bannikov GA. Monoclonal antibody mapping of keratins 8 and 17 and of vimentin in normal human mammary gland, benign tumors, dysplasias and breast cancer. Int J Cancer 42:147, 1988.

    Article  PubMed  CAS  Google Scholar 

  175. Shoenfled Y, Hizi A, Tal R, et al. Human monoclonal antibodies derived from lymph nodes of a patient with breast carcinoma react with MuMTV polypeptides. Cancer 59:43, 1987.

    Article  Google Scholar 

  176. Aihara K, Yamada K, Murakami H, Nomura Y, and Omura H. Production of human-human hybridomas secreting monoclonal antibodies reactive to breast cancer cell lines. In Vitro Cell Dev Biol 24:959, 1988.

    Article  PubMed  CAS  Google Scholar 

  177. Glassy MC. Immortalization of human lymphocytes from a tumor-involved lymph node. Cancer Res 47:5181, 1987.

    PubMed  CAS  Google Scholar 

  178. Imam A and Stephanian E. Use of xenograft tissue for the initial screening of human monoclonal antibodies by immunohistological technique. J Immunol Methods 114:69, 1988.

    Article  PubMed  CAS  Google Scholar 

  179. Kjeldsen TB, Rasmussen BB, Rose C, and Zeuthen J. Human-human hybridomas and human monoclonal antibodies obtained by fusion of lymph node lymphocytes from breast cancer patients. Cancer Res 48:3208, 1988.

    PubMed  CAS  Google Scholar 

  180. Tamaki Y, Kobayashi T, Higashiyama M, Shimano T, Mori T, and Murakami H. A human monoclonal antibody derived from axillary lymph nodes of a breast cancer patient. Hybridoma 8:293, 1989.

    Article  PubMed  CAS  Google Scholar 

  181. Schlom J, Wunderlich D, and Teramoto Y. Generation of human monoclonal antibodies reactive with human mammary carcinoma cells. Proc Natl Acad Sci USA 77:6841, 1980.

    Article  PubMed  CAS  Google Scholar 

  182. Queen C, Schneider WP, Selick HE, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 86:10029, 1989.

    Article  PubMed  CAS  Google Scholar 

  183. Ledermann JA, Begent RHJ, Bagshawe KD, et al. Repeated antitumor antibody therapy in man with suppression of the host response by Cyclosporin A. Br J Cancer 58:654, 1988.

    Article  PubMed  CAS  Google Scholar 

  184. Arteaga CL, Kitten LJ, Coronado EB, et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84:1418, 1989.

    Article  PubMed  CAS  Google Scholar 

  185. Arteaga CL and Osborne CK. Growth inhibition of human breast cancer cells in vitro with an antibody against the type I somatomedin receptor. Cancer Res 49:6237, 1989.

    PubMed  CAS  Google Scholar 

  186. Bjorge JD, Paterson AJ, and Kudlow JE. Phorbol ester or epidermal growth factor (EGF) stimulates the concurrent accumulation of mRNA for the EGF receptor and its ligand transforming growth factor-alpha in a breast cancer cell line. J Biol Chem 264:4021, 1989.

    PubMed  CAS  Google Scholar 

  187. Robertson JF, Ellis IO, Bell J, et al. Carcinoembryonic antigen immunocytochemistry in primary breast cancer. Cancer 64:1638, 1989.

    Article  PubMed  CAS  Google Scholar 

  188. Kufe D, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, and Schlom J. Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3:223, 1984.

    Article  PubMed  CAS  Google Scholar 

  189. Greene GL, Nolan C, Engler JP, and Jensen EV. Monoclonal antibodies to human estrogen receptor. Proc Natl Acad Sci USA 77:5115, 1980.

    Article  PubMed  CAS  Google Scholar 

  190. Pertschuk LP, Feldman JG, Eisenberg KB, et al. Immunocytochemical detection of progesterone receptor in breast cancer with monoclonal antibody. Relation to biochemical assay, disease-free survival, and clinical endocrine response. Cancer 62:342, 1988.

    Article  PubMed  CAS  Google Scholar 

  191. Capony F, Garcia M, Montcourrier P, et al. A hormone-regulated pro-cathepsin D secreted by human mammary cancer cells. Biochem Soc Trans 17:31, 1989.

    PubMed  CAS  Google Scholar 

  192. Freiss G, Vignon F, Pau B, Paolucci F, and Rochefort H. A two-site immunoenzymometric assay of 52-kDa pro-cathepsin D, and its use in human breast diseases. Clin Chem 35:234, 1989.

    PubMed  CAS  Google Scholar 

  193. Rogier H, Freiss G, Besse MG, et al. Two-site immunoenzymometric assay for the 52-kDa cathepsin D in cytosols of breast cancer tissues. Clin Chem 35:81, 1989.

    PubMed  CAS  Google Scholar 

  194. Freiss G, Vignon F, and Rochefort H. Characterization and properties of two monoclonal antibodies specific for the Mr 52,000 precursor of cathepsin D in human breast cancer cells. Cancer Res 48:3709, 1988.

    PubMed  CAS  Google Scholar 

  195. Ménard S, Tagliabue E, Canevari S, et al. Generation of monoclonal antibodies reacting with normal and cancer cells of human breast. Cancer Res 43:1295, 1983.

    PubMed  Google Scholar 

  196. Thompson CH, Jones SL, Whitehead RH, and McKenzie IFC. A human breast tissue-associated antigen detected by a monoclonal antibody. J Natl Cance Inst 70:409, 1983.

    CAS  Google Scholar 

  197. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, and Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165, 1989.

    PubMed  CAS  Google Scholar 

  198. van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexipression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319:1239, 1988.

    Article  PubMed  Google Scholar 

  199. Stacker SA, Thompson CH, Rigler C, and McKenzie IFC. A new breast carcinoma antigen defined by a monoclonal antibody. J Natl Cancer Inst 75:801, 1985.

    PubMed  CAS  Google Scholar 

  200. Frankel AE, Ring DB, Tringale F, and Hseih-Ma ST. Tissue distribution of breast cancer-associated antigens defined by monoclonal antibodies. J Biol Resp Modif 4:273, 1985.

    CAS  Google Scholar 

  201. Ring DB, Kassel JA, Hsieh MS, et al. Distribution and physical properties of BCA200, a Mr 200,000 glycoprotein selectively associated with human breast cancer. Cancer Res 49:3070, 1989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breitmeyer, J.B. (1992). Immunotherapy of breast cancer. In: Henderson, I.C. (eds) Adjuvant Therapy of Breast Cancer. Cancer Treatment and Research, vol 60. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3496-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3496-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6550-1

  • Online ISBN: 978-1-4615-3496-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics