Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 68))

Abstract

Treatment with ionizing radiation is a major modality for the treatment of cancer. Between 50 and 60 percent of all cancer patients receive treatment with ionizing radiation at some time during the course of their disease (1). Thus, approximately 600,000 new patients will receive radiotherapy this year in the United States alone. Despite the proven efficacy of radiotherapy in the treatment of certain tumor types, nearly one half of the patients treated with radiotherapy will die with at least microscopic recurrence of tumor at the irradiated site (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brady LW, Sheline GE, Suntharalingam N, Sutherland RM: The interdisciplinary program for radiation oncology research: Overview. Cancer Treat. Symp. 1:1–11, 1984.

    Google Scholar 

  2. Diamond JJ, Hanks GH, Kramer S: The structure of radiation oncology practices in the continental United States. Int. J. Radiat. Oncol. Biol. Phys. 14:547–548, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Russo A, Mitchell J, Kinsella T et al: Determinants of radiosensitivity. Sem. Oncol. 12:332–349, 1985.

    CAS  Google Scholar 

  4. Adams GE Clarke ED, Flockhart IR et al: Structure-activity relationships in the development of hypoxic cell radiosensitizers. Int. J. Radiat. Biol. 35:133–150, 1979.

    Article  CAS  Google Scholar 

  5. Weissberg JB, Son YH, Papac RJ et al: Randomized clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer. Int. J. Radiat. Oncol. Biol Phys. 17:3–9, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Chaplin DJ: Hydralazine-induced tumor hypoxia: A potential target for cancer chemotherapy. J. Natl. Cancer Inst. 81:618–622, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Nakatsuguwa S: Potentially lethal damage repair and its implication in cancer treatment. In: Modification of Radiosensitivity in Cancer Treatment. T Sugahara (ed), Academic Press, Toyko, pp. 221–250, 1984.

    Google Scholar 

  8. Thames HD, Peters LJ, Withers HR, Fletcher GH: Accelerated fractionation vs. hyper fractionation rationales for several treatments per day. Int. J. Radiat. Oncol. Biol. Phys. 9:127–138, 1983.

    Article  PubMed  Google Scholar 

  9. Svoboda VHJ: Further experience with radiotherapy by multiple daily sessions. Br. J. Radiol. 51:363–369, 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Glatstein E, Lichter AS, Fraass BA et al: The imaging revolution and radiation oncology: Use of CT, ultrasound, and NMR for localization, treatment planning and treatment delivery. Int. J. Radiat. Oncol. Biol. Phys. 11:299–314, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Brown JM: Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br. J. Radiol. 52:650–656, 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Alper T: Cellular Radiobiology. Cambridge University Press, Cambridge, 1979.

    Google Scholar 

  13. Coleman CN, Bump EA, Kramer RA: Chemical modifiers of cancer treatment. J. Clin. Oncol. 6:709–733, 1988.

    PubMed  CAS  Google Scholar 

  14. Adams GE, Ahmed I, Sheldon PW, Stratford IJ: Radiation sensitization and chemopotentiation: RSU 1069, a compound more efficient than misonidazole in vitro and in vivo. Br. J. Cancer 49:571–577, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Chaplin DJ, Durand RE, Stratford IJ: The radiosensitizing and toxic effects of RSU-1069 on hypoxic cells in a murine tumor. Int. J. Radiat. Oncol. Biol. Phys. 12:1091–1095, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Silver ARJ, O'Neill P: Interaction of the aziridine moiety of RSU-1069 with nucleotides and inorganic phosphate. Implications for alkylation of DNA. Biochem. Pharmacol. 35:1107–1112, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Horwich A, Hoiliday SB, Deacon JM, Peckham MJ: A toxicity and pharmacokinetic study in man of the hypoxic cell radiosensitizer RSU-1069. Br. J. Radiol. 39:1238–1240, 1986.

    Article  Google Scholar 

  18. Sebolt-Leopold JS, Arundel-Suto CM, Elliott WL et al: Preclinical evaluation of PD 130908, a desoxy analog of RSU 1069 with superior potency and reduced toxicities. Proc. 38th Annual Mtg. Radiat. Res. Soc. Abst. Cv 14, 1990.

    Google Scholar 

  19. Leopold WR, Arundel-Suto CM, Elliott WL et al: In vitro and in vivo evaluation of the radiosensitizer PD 130908, an analog of RSU 1069 with superior potency and reduced toxicity. Proc. Am. Assoc. Cancer Res. 31:393, 1990.

    Google Scholar 

  20. Overgaard J, Hansen HS, Jorgensen K, Hansen MH: Primary radiotherapy of larynx and pharynx carcinoma — an analysis of some factors influencing local control and survival. Int. J. Radiat. Oncol. Biol. Phys. 12:515–521, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Brown JM, Yu NY, Brown DM, Lee WW: SR-2508, a 2 nitro imidazole amide which should be superior to misonidazole as a radio sensitizer for clinical use. Int. J. Radiat. Oncol. Biol. Phys. 7:695–703, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Cole S, Stratford IJ, Melden EM et al: Dual function nitroimidazoles less toxic than RSU1069: Selection of candidate drugs for clinical trial (RB 6145 and/or PD 130908). Int. J. Radiat. Oncol. Biol. Phys. In press.

    Google Scholar 

  23. Sebolt-Leopold JS, Vincent PW, Beningo KA et al: Pharmacologic/pharmacokinetic evaluation of emesis induced by analogs of RSU 1069 and its control by antiemetic agents. Int. J. Radiat. Oncol. Biol. Phys. In press.

    Google Scholar 

  24. Thraves PJ, Mossman KL, Brennan T, Dritschilo A: Differential radiosensitization of human tumor cells by 3-aminobenzamide and benzamide: Inhibitors of poly (ADP-ribosylation). Int. J. Radiat. Biol. 50:961–972, 1986.

    Article  CAS  Google Scholar 

  25. Benjamin RC, Gill DM: Dependence of poly (ADP-ribose) synthesis on strand breakage in DNA. J. Biol. Chem. 255:10493–10501, 1980.

    PubMed  CAS  Google Scholar 

  26. Oghushi H, Yoshihara K, Kaniya T: Bovine thymus poly (ADPribose) polymerase. Physical properties and binding to DNA. J. Biol. Chem. 255:6205–6211, 1980.

    Google Scholar 

  27. Durkacz BW, Omidiji O, Gray DA, Shall S: (ADP-ribose)n participates in DNA excision repair. Nature (London) 283:593–596, 1980.

    Article  CAS  Google Scholar 

  28. Nduka N, Skidmore CJ, Shall S: The enhancement of cytotoxicity of N-Methyl-N-Nitroso-Urea and of gamma-irradiation by inhibitors of poly (ADP-ribose) polymerase. Eur. J. Biochem. 105:525–530, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Ben-Hur E, Utsumi H, El kind MM: Inhibitors of poly (ADPribose) synthesis enhance x-ray killing of log phase Chinese hamster cells. Radiat. Res. 97:546–555, 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Wasserman K, Newman RA, McLaughlin JD et al: A possible role for altered poly(Adenosine diphosphoribose)-synthesis in the sensitivity of human head and neck squamous carcinoma cells to ionizing radiation. Biochem. Biophys. Res. Commun. 154:1041–1046, 1988.

    Article  Google Scholar 

  31. Lunec J, George AM, Hedges M et al: Postirradiation sensitization with the ADP-ribosyltransferase inhibitor 3-acetamidobenzamide. Br. J. Cancer Suppl. VI. 49:19–25, 1984.

    Google Scholar 

  32. Huet J, Laval F: Influence of poly (ADP-ribose) synthesis inhibitors on the repair of sublethal and potentially lethal damage in-irradiated mammalian cells. Int. J. Radiat. Biol. 47:655–662, 1985.

    Article  CAS  Google Scholar 

  33. Brown DM, Evans JW, Brown JM: The influence of inhibitors of poly (ADP-ribose) polymerase on x-ray induced potentially lethal damage repair. Br. J. Cancer Suppl. VI. 49:27–34, 1984.

    Google Scholar 

  34. Suto MJ, Turner WR, Arundel-Suto CM et al: Dihydroisoquinolinones: The design and synthesis of a new series of potent inhibitors of poly (ADP-ribose) polymerase. Anticancer Drug Design 6:107–117, 1991.

    CAS  Google Scholar 

  35. Shizuta Y, Ito S, Nakata K, Hazaishi O: Poly (ADP-ribose) synthetase from calf thymus. Methods in Enzymology 66:159–165, 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Arundel-Suto, CM, Scavone SV, Turner WR et al: Effects of PD128763, a new potent inhibitor of poly (ADP-ribose) polymerase, on x-ray induced cellular recovery processes in Chinese hamster V79 cells. Radiat. Res. 126:367–371, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Arundel-Suto CM, Sebolt-Leopold JS: Inhibition of DNA double strand break repair by inhibitors of poly (ADP-ribose) polymerase and its relationship to inhibition of cellular recovery in Chinese hamster V79 cells. Submitted for publication.

    Google Scholar 

  38. Sebolt-Leopold JS, Arundel-Suto CM, Scavone SV et al: Development of a new series of potent ADP-ribosyltransferase inhibitors: The dihydro-isoquinolinones. Proc. Am. Assoc. Cancer Res. 31:418, 1990.

    Google Scholar 

  39. Elliott WL, Sebolt-Leopold JS, Leopold WR, Siemann DW: In vivo evaluation of a new potent inhibitor of ADP-ribosyltransferase activity, PD128763. Proc. Am. Assoc. Cancer Res. 31:418, 1990.

    Google Scholar 

  40. Siemann DW, Sebolt-Leopold JS, Leopold WR, Elliott WL: Effects of PD128763, a new potent inhibitor of ADP-ribosyl transferase, on radiation induced cellular recovery processes in solid tumors. Proc. 38th Annual Mtg. Radiat. Res. Soc.

    Google Scholar 

  41. Brown JM, Koong A: Therapeutic advantage of hypoxic cells in tumors: A theoretical study. JNCI 83:178–185, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leopold, W.R., Sebolt-Leopold, J.S. (1992). Chemical Approaches to Improved Radiotherapy. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development. Developments in Oncology, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3492-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3492-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6548-8

  • Online ISBN: 978-1-4615-3492-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics