Advertisement

Magnetic Resonance Spectroscopy of Myocardial Ischemia

  • S. Albert Camacho
  • Saul Schaefer

Abstract

Magnetic resonance spectroscopy (MRS) is now established as an important technique for studying the effects of ischemia on myocardial metabolism and ion fluxes. Prior to the development of MRS, biochemical information from whole hearts could be obtained only by analysis of biopsy specimens or indirectly by sampling coronary sinus blood for compounds such as lactate. The development of MRS has made it possible to directly measure metabolically important compounds and ions in a nondestructive and noninvasive manner.

Keywords

Myocardial Blood Flow Regional Ischemia Myocardial Metabolism Perfuse Heart High Energy Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jacobus WE, Taylor GJ, Hollis DP, Nunnally R (1977). Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265:756–758.PubMedCrossRefGoogle Scholar
  2. 2.
    Garlick PB, Radda GK, Seeley PJ (1977). Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun 74: 1256–1262.PubMedCrossRefGoogle Scholar
  3. 3.
    Hollis DP, Nunnally RL, Jacobus WE, Taylor GJ (1977). Detection of regional ischemia in perfused beating hearts by phosphorus nuclear magnetic resonance. Biochem Biophys Res Commun 75:1086–1091.PubMedCrossRefGoogle Scholar
  4. 4.
    Gadian DG, Hoult DI, Radda GH, et al. (1976). Phosphorus nuclear magnetic resonance studies on normoxic and ischemic cardiac tissue. Proc Natl Acad Sci USA 73:446.CrossRefGoogle Scholar
  5. 5.
    Camacho SA, Parmley WW, James TL, Abe H, Wu ST, et al. (1988). Substrate regulation of the nucleotide pool during regional ischaemia and reperfusion in an isolated rat heart preparation: a phosphorus-31 magnetic resonance spectroscopy analysis. Cardiovasc Res 22: 193–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke K, O’Connor AJ, Willis RJ (1987). Temporal relation between energy metabolism and myocardial function during ischemia and reperfusion. Am J Physiol 253:H412–421.PubMedGoogle Scholar
  7. 7.
    Malloy CR, Matthews PM, Smith MB, Radda GK (1986). Influence of propranolol on acidosis and high energy phosphates in ischemic myocardium of the rabbit. Cardiovasc Res 20: 710–720.PubMedCrossRefGoogle Scholar
  8. 8.
    Pieper GM, Todd GL, Wu ST, Salhany JM, Clayton FC, Eliot RS (1980). Attenuation of myocardial acidosis by propranolol during ischemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovasc Res 14:646–653.PubMedCrossRefGoogle Scholar
  9. 9.
    Lange R, Ingwall J, Hale SL, Alker KJ, Braunwald E, Kloner RA (1984). Preservation of high-energy phosphates by verapamil in reperfused myocardium. Circulation 70: 734–741.PubMedCrossRefGoogle Scholar
  10. 10.
    Lavanchy N, Martin J, Rossi A (1986). Effects of diltiazem on the energy metabolism of the isolated rat heart submitted to ischemia: a 31P NMR study. J Mol Cell Cardiol 18:931–941.PubMedCrossRefGoogle Scholar
  11. 11.
    Ruigrok TJC, Van Echteld CJA, De Kruijff B, Borst C, Meijler FL (1983). Protective effect of nifedipine in myocardial ischemia assessed by phosphorus-31 nuclear magnetic resonance. Eur Heart J 4 (suppl C):109–H3.PubMedGoogle Scholar
  12. 12.
    Keller AM, Sorce DJ, Sciacca RR, Barr ML, Cannon PJ (1988). Very rapid lactate measurement in ischemic perfused hearts using 1H MRS continuous negative echo acquisition during steady-state frequency selective excitation. Magn Reson Med 7:65–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Richards T, Tscholokoff D, Higgins CB (1987). Proton NMR spectroscopy in canine myocardial infarction. Magn Reson Med 4:555.PubMedCrossRefGoogle Scholar
  14. 14.
    Ugurbil K, Petein M, Maiden R, et al. (1984). High resolution proton NMR studies of perfused rat hearts. FEBS Lett 167:73.PubMedCrossRefGoogle Scholar
  15. 15.
    Malloy CR, Sherry AD, Jeffrey FM (1987). Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett 212:58–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoekenga DE, Brainard JR, Hutson JY (1988). Rates of glycolysis and glycogenosis during ischemia in glucose-insulin-potassium-treated perfused hearts; a 13C, 31P nuclear magnetic resonance study. Circ Res 62:1065–1074.PubMedCrossRefGoogle Scholar
  17. 17.
    Brainard JR, Hoekenga DE, Hutson JY (1986). Metabolic consequence of anoxia in the isolated, perfused guinea pig heart: anaerobic metabolism of endogenous amino acids. Magn Reson Med 3:673.PubMedCrossRefGoogle Scholar
  18. 18.
    Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990). Quantification of [Ca2+] in perfused hearts: critical evaluatin of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 66:1255–1267.PubMedCrossRefGoogle Scholar
  19. 19.
    Steenburgen C, Murphy E, Levy L, London RE (1987). Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707.CrossRefGoogle Scholar
  20. 20.
    Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988). Effect of ischemia on calcium-dependent flourescence transients in rabbit hearts containing Indo 1. Circulation 78:1047–1059.PubMedCrossRefGoogle Scholar
  21. 21.
    Kihara Y, Grossman W, Morgan JP (1989). Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. CircRes 65:1029–1044.Google Scholar
  22. 22.
    Pike MM, Kitakaze M, Marban E (1990). 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259: H1767–H1773.PubMedGoogle Scholar
  23. 23.
    Burstein D, Litt HI, Fossel ET (1989). NMR characteristics of “visible” intracellular myocardial potassium in perfused rat hearts. Magn Reson Med 9:66–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirkels JH, van Echteld CJA, Ruigrok TJC (1989). Intracellular magnesium during myocardial ischemia and reperfusion: possible consequences for post ischemic recovery. J Mol Cell Cardiol 21:1209–1218.PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy E, Steenbergen C, Levy LA, Raju B, London RE (1989). Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem 264: 5622–5627.PubMedGoogle Scholar
  26. 26.
    Guth BG, Martin JF, Heusch G, Ross J Jr (1987). Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs. J Am Coll Cardiol 10:673–681.PubMedCrossRefGoogle Scholar
  27. 27.
    Camacho SA, Lanzer P, Toy BJ, Gober J, Valenza M, Botvinick EH, Weiner MW (1988). In vivo alterations of high energy phosphates and intracellular pH during reversible regional ischemia: a 31P magnetic resonance spectroscopy study. Am Heart J 116:701–708.PubMedCrossRefGoogle Scholar
  28. 28.
    Schwartz GG, Schaefer S, Gober JG, Meyerhoff D, Massie B, Weiner MW (1990). Myocardial high energy phosphate metabolism during brief coronary occlusion and reactive hyperemia in the pig. Am J Physiol 259:H1190–H1196.PubMedGoogle Scholar
  29. 29.
    Lavanchy N, Martin J, Rossi A (1984). Graded global ischemia and reperfusion of the isolated perfused rat heart: characterization by 31P NMR spectroscopy of the extent of energy metabolism damage. Cardiovasc Res 18: 573–582.PubMedCrossRefGoogle Scholar
  30. 30.
    Clarke K, Willis RJ (1987). Energy metabolism and contractile function in rat hearts during graded, isovolumic perfusion using 31P nuclear magnetic resonance spectroscopy. J Mol Cell Cardiol 19:1153–1160.PubMedCrossRefGoogle Scholar
  31. 31.
    Kitakaze M, Marban E (1989). Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol 414:455–472.PubMedGoogle Scholar
  32. 32.
    Keller AM, Cannon PJ (1991). Effect of graded reductions of coronary pressure and flow on myocardial metabolism and performance: a model of “hibernating” myocardium. J Am Coll Cardiol 17:1661–1670.PubMedCrossRefGoogle Scholar
  33. 33.
    Figueredo VM, Brandes R, Massie B, Weiner MW, Camacho SA (1991). Regulation of contractility during mild reductions in coronary flow in the perfused heart: a study of phosphates, pH, and cytosolic calcium (abstract). Circulation 84.Google Scholar
  34. 34.
    Weiss RG, Chacko VP, Glickson JD, Gerstenblith G (1989). Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci USA 86: 6426–6430.PubMedCrossRefGoogle Scholar
  35. 35.
    Wikmann-Coffelt J, Wu ST, Parmley WW (1991). Intracellular endocardial calcium and myocardial function in rat hearts. Cell Calcium 12:39–50.CrossRefGoogle Scholar
  36. 36.
    Schaefer S, Camacho SA, Gober J, Obregon R, DeGroot MA, Botvinick EH, Massie BM, Weiner MW (1989). Response of myocardial metabolites to graded regional ischemia: 31P NMR studies of porcine myocardium in vivo. Circ Res 64:968–976.PubMedCrossRefGoogle Scholar
  37. 37.
    Schaefer S, Schwartz GG, Gober JR, Wong AK, Massie B, Weiner MW (1990). Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia: 31P NMR studies of porcine myocardium in vivo. J Clin Invest 85:706–713.PubMedCrossRefGoogle Scholar
  38. 38.
    Guyton RA, McClenathan JH, Newman GE, et al. (1977). Significance of subendocardial ST segment elevation caused by coronary stenosis in the dog. Am J Cardiol 40:373–380.PubMedCrossRefGoogle Scholar
  39. 39.
    Fenton TR, Cherry JM, Klassen GA (1978). Transmural myocardial deformation in the canine left ventricle. Am J Physiol 235: 523–530.Google Scholar
  40. 40.
    Kirk ES, Honig CR (1964). Nonuniform distribution of blood flow and gradients of oxygen tension within the heart. Am J Physiol 207:661–668.PubMedGoogle Scholar
  41. 41.
    Gober JR, Schaefer S, Camacho A, DeGroot M, Obregon R, Botvinick E, Weiner M, Massie B (1990). Epicardial and endocardial localized 31P magnetic resonance spectroscopy: evidence for metabolic heterogeneity during regional ischemia. Magn Reson Med, 13:204–215.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajagopalan B, Bristow JD, Radda GK (1989). Measurement of transmural distribution of phosphorus metabolites in the pig heart by 31P magnetic resonance spectroscopy. Cardiovasc Res 23:1015–1026.PubMedCrossRefGoogle Scholar
  43. 43.
    Path G, Robitaille PM, Merkle H, Tristani M, Zhang J, Garwood M, AHL From, Bache RJ, Ugurbil K (1990). Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 67:660–673.PubMedCrossRefGoogle Scholar
  44. 44.
    Bottomley PA (1985). Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 229:769–772.PubMedCrossRefGoogle Scholar
  45. 45.
    Schaefer S, Gober J, Valenza M, Karczmar GS, Matson GB, Camacho SA, Botvinick EH, Massie B, Weiner MW (1988). Magnetic resonance imaging guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol 12:1449–1455.PubMedCrossRefGoogle Scholar
  46. 46.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990). Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323:1593–1600.PubMedCrossRefGoogle Scholar
  47. 47.
    Braunwald E, Rutherford JD (1986). Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium.” J Am Coll Cardiol 8:1467–1470.PubMedCrossRefGoogle Scholar
  48. 48.
    Rahimtoola SH (1989). The hibernating myocardium. Am Heart J 117:211–221.PubMedCrossRefGoogle Scholar
  49. 49.
    Apstein CS, Gravino F, Hood WB (1979). Limitations of lactate production as an index of myocardial ischemia. 60:877–888.Google Scholar
  50. 50.
    Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988). Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78:729–735.PubMedCrossRefGoogle Scholar
  51. 51.
    Neill WA, Ingwall JS (1986). Stabilization of a derangement in adenosine triphosphate metabolism during sustained, partial ischemia in the dog heart. J Am Coll Cardiol 8: 894–900.PubMedCrossRefGoogle Scholar
  52. 52.
    Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD (1990). Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67:1481–1493.PubMedCrossRefGoogle Scholar
  53. 53.
    Schaefer S, Schwartz GG, Wisneski JA, Trocha ST, Christoph I, Steinman S, Garcia J, Massie BM, Weiner MW (1992). Response of high energy phosphates and lactate release during prolonged regional ischemia in vivo. Circulation 85:342–349.PubMedCrossRefGoogle Scholar
  54. 54.
    Rehr RB, Tatum JL, Hirsch JI, Wetstein L, Clarke G (1988). Effective separation of normal, acutely ischemic, and reperfused myocardium with P-31 MR spectroscopy. Radiology 168: 81–89.PubMedGoogle Scholar
  55. 55.
    Bottomley PA, Smith LS, Brazzamano S, Hedlund LW, Redington RW, Herfkens RJ (1987). The fate of inorganic phosphate and pH in regional myocardial infarction: a non-invasive 31P NMR study. Magn Reson Med 59: 338–342.Google Scholar
  56. 56.
    Bottomley PA, Herfkens RJ, Smith LS, Bashore TM (1987). Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 165:703–707.PubMedGoogle Scholar
  57. 57.
    Richards T, Tscholakoff D, Higgins CB (1987). Proton NMR spectroscopy in canine myocardial infarction. Magn Reson Med 4:555–566.PubMedCrossRefGoogle Scholar
  58. 58.
    Evanochko WT, Reeves RC, Sakai TT, Canby RC, Pohost GM (1987). Proton NMR spectroscopy in myocardial ischemic insult. Magn Reson Med 5:23–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Bouchard A, Doyle M, Wolkowicz PB, Wilson R, Evanochko WT, Pohost GM (1991). Visualization of altered myocardial lipids by 1H NMR chemical shift imaging following ischemic insult. Magn Reson Med.Google Scholar
  60. 60.
    Kloner RA, DeBoer LWV, Darsee JR, Ingwall, Braunwald E (1981). Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Proc Natl Acad Sci USA 78:7152–7156.PubMedCrossRefGoogle Scholar
  61. 61.
    Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS (1988). Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63:1–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Sako EY, Kingsley-Hickman PB, From HL, Foker JE, Ugurbil K (1988). ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR. J Biol Chem 263:10600–10607.PubMedGoogle Scholar
  63. 63.
    Greenfield RA, Swain JL (1987). Disruption of myofibrillar energy utilization: dual mechanisms that may contribute to post-ischemic dysfunction. Circ Res 60:283–289.PubMedCrossRefGoogle Scholar
  64. 64.
    Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E (1990). Excitation-contraction coupling in post-ischemic myocardium. Does failure of activator Ca2 + transients underlie stuning? Circ Res 66: 1268–1276.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • S. Albert Camacho
  • Saul Schaefer

There are no affiliations available

Personalised recommendations