NMR Studies of Glycogen Metabolism in the Heart

  • Maren R. Laughlin


The heart stores glucose in polymer form as glycogen, which can be quickly mobilized for use as an endogenous glycolytic substrate during short periods of high work, low oxygen availability, or reduced blood flow. Glycogen storage is the single most important route of myocardial glucose disposal, accounting for as much as 60%–70% of the glucose that is phosphory-lated in human heart after a meal 1.


Nuclear Magnetic Resonance Glycogen Synthesis Glycogen Phosphorylase Nuclear Magnetic Resonance Study Nuclear Magnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wisneski JA, Gertz EW, Neese A, Gruenke LO, Morris DL, Craig JC (1985). Clin Invest 76:1819–1827CrossRefGoogle Scholar
  2. 2.
    Lavanchy N, Martin J, Rossi A (1984). Glycogen metabolism: a 13C-NMR study on the isolated perfused rat heart. FEBS Lett 178:34–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Hoekenga DE, Brainard JR, Hutson JY, Matwiyoff NA (1984). Carbon-13 nuclear magnetic resonance studies of glycogen synthesis and mobilization in perfused guinea pig hearts (abstract). Second Annual Meeting, Magn Reson Med 1:167–168.Google Scholar
  4. 4.
    Hoekenga DE, Brainard JR, Hutson JY (1988). Rates of glycolysis and glycogenolysis during ischemia in glucose-insulin-potassium-treated perfused hearts: A 13C, 31P nuclear magnetic resonance study. Circ Res 62:1065–1074.PubMedCrossRefGoogle Scholar
  5. 5.
    Brainard JR, Hutson JY, Hoekenga DE, Lenhoff R (1989). Ordered synthesis and mobilization of glycogen in the perfused heart. Biochemistry 28:9766–9772.PubMedCrossRefGoogle Scholar
  6. 6.
    Neurohr KJ, Barrett EJ, Shulman RG (1983). In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80:1603–1607.PubMedCrossRefGoogle Scholar
  7. 7.
    Neurohr KJ, Gollin G, Barrett EJ, Rothman D, Shulman RG (1984). Carbon-13 nuclear magnetic resonance studies of myocardial glycogen metabolism in live guinea pigs. Biochemistry 23:5029–5035.PubMedCrossRefGoogle Scholar
  8. 8.
    Neurohr KJ (1984). An experimental setup for carbon-13 NMR studies of heart metabolism in live guinea pigs. J Magn Reson 59:511–514.Google Scholar
  9. 9.
    Laughlin MR, Petit WA, Dizon JM, Shulman RG, Barrett EJ (1988). NMR measurements of in vivo myocardial glycogen metabolism. J Biol Chem 263:2285–2291.PubMedGoogle Scholar
  10. 10.
    Barrett EJ, Petit WA, Laughlin MR (1987). In vivo NMR studies of glycogen metabolism: a new look at a time honored problem. Ann N Y Acad Sci 508:251–264.PubMedCrossRefGoogle Scholar
  11. 11.
    Laughlin MR, Petit WA, Shulman RG, Barrett EJ (1990). Measurement of myocardial glycogen synthesis in diabetic and fasted rats. Am J Physiol 258:E184–E190.PubMedGoogle Scholar
  12. 12.
    Laughlin MR, Morgan C, Barrett EJ (1990). Hypoxemia stimulates heart glycogen synthase and synthesis: Effects of insulin and diabetes mellitus. Diabetes 40:385–390.CrossRefGoogle Scholar
  13. 13.
    Laughlin MR, Petit Jr, WA, Shulman RG, Barrett EJ (1988). Glycogen degradation in rat heart studied in vivo with 13C NMR spectroscopy (abstract). Seventh Annual Meeting of the Society of Magnetic Resonance Medicine, Vol. 2, p. 669.Google Scholar
  14. 14.
    Bottomley PA, Hardy CJ, Roemer PB, Mueller OM (1989). Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn Reson Med 12:348–363.PubMedCrossRefGoogle Scholar
  15. 15.
    Bottomley PA (1989). Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 170:1–15.PubMedGoogle Scholar
  16. 16.
    Shulman GI, Rothman DL, Chung Y, Rossetti L, Petit WA, Barrett EJ, Shulman RG (1988). 13C NMR studies of glycogen turnover in the perfused rat liver. J Biol Chem 263:5027–5029.PubMedGoogle Scholar
  17. 17.
    Cohen SM (1983). Simultaneous 13C and 31P NMR studies of perfused rat liver. Effects of insulin and glucagon and a 13C NMR assay of free Mg+2. J Biol Chem 258:14294–14308.PubMedGoogle Scholar
  18. 18.
    Cohen SM, Rognstad R, Shulman RG, Katz J (1981). A comparison of 13C nuclear magnetic resonance and 14C tracer studies of hepatic metabolism. J Biol Chem 256:3428–3432.PubMedGoogle Scholar
  19. 19.
    Siegfried BA, Reo NV, Ewy CS, Shalwitz RA, Ackerman JJM, McDonald JM (1985). Effect of hormone and glucose administration on hepatic glucose and glycogen metabolism in vivo. J Biol Chem 260:16137–16142.PubMedGoogle Scholar
  20. 20.
    Shalwitz RA, Reo NV, Becker NN, Hill AC, Ewy CS, Ackerman JJH (1989). Hepatic glycogen synthesis from duodenal glucose and alanine. J Biol Chem 264:3930–3934.PubMedGoogle Scholar
  21. 21.
    David M, Petit WA, Laughlin MR, Shulman RG, King JE, Barrett EJ (1990). Simultaneous synthesis and degradation of rat liver glycogen: an in vivo NMR spectroscopic study. J Clin Invest 86:612–617.PubMedCrossRefGoogle Scholar
  22. 22.
    Jehenson P, Canioni P, Hantraye P, Syrota A (1992). C-13 NMR study of glycogen metabolism in the baboon liver in vivo. Biochem Biophys Res Comm 182:900–905.PubMedCrossRefGoogle Scholar
  23. 23.
    Jue T, Lohman AB, Ordidge RD, Shulman RG (1987). Natural abundance 13C NMR spectrum of glycogen in humans. Magn Reson Med 5: 377–379.PubMedCrossRefGoogle Scholar
  24. 24.
    Avison MJ, Rothman DL, Nadel E, Shulman RG (1988). Detection of human muscle glycogen by natural abundance 13C NMR. Proc Natl Acad Sci USA 85:1634–1636.PubMedCrossRefGoogle Scholar
  25. 25.
    Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990). Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–228.PubMedCrossRefGoogle Scholar
  26. 26.
    Jue T, Rothman DL, Shulman GI, Tavitian BA, DeFronzo RA, Shulman RG (1989). Direct observation of glycogen synthesis in human muscle with 13C NMR. Proc Natl Acad Sci USA 86:4489–4491.PubMedCrossRefGoogle Scholar
  27. 27.
    Bomsdorf H, Roschmann P, Wieland J (1991). Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla. Magn Reson Med 22:10–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Knuttel A, Kimmich R, Spohn KH (1991). Motion insensitive volume-selective pulse sequences for direct and proton-detected 13C spectroscopy: detection of glycogen in the human liver in vivo. Magn Reson Med 17: 470–482.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang D-J, Ikai I, Okuda M, Wang Z, Zhao P, Leigh JS (1990). The detection of glycogen by diffusion contrast 1H NMR (abstract). Ninth Annual Meeting of the SMRM, Vol. 3, p. 1100.Google Scholar
  30. 30.
    Sillerud LO, Shulman RG (1983). Structure and metabolism of mammaliam liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry 22:1087–1094.PubMedCrossRefGoogle Scholar
  31. 31.
    Zang L-H, Laughlin MR, Rothman DL, Shulman RG (1990). 13C NMR relaxation times of hepatic glycogen in vitro and in vivo. Biochemistry 29:6815–6820.PubMedCrossRefGoogle Scholar
  32. 32.
    Hull W, Zerfowski E, Bannasch P (1987). Quantitation of glycogen in tissue by means of 13C-NMR: application to human kidney tumors (abstract). Sixth Annual Meeting of the SMRM, Vol. 1, p. 488.Google Scholar
  33. 33.
    Jackson CL, Bryant RG (1989). Carbon-13 NMR of glycogen: hydration response studied by using solids methods. Biochemistry 28: 5024–5028.PubMedCrossRefGoogle Scholar
  34. 34.
    Drochmans P (1962). Morphologie du gly-cogene: Etude au microscope electronique de colorations negatives du glycogene particulaire. J Ultrastruc Res 6:141–163.CrossRefGoogle Scholar
  35. 35.
    Klinov SV, Chebotareva NA, Lissovskaya NP, Davidov DR, Kurganov BJ The interaction of muscle glycogen phosphorylase b with glycogen. Biochim Biophys Acta 709:91–98.Google Scholar
  36. 36.
    Shalwitz RA, Reo NV, Becker NN, Ackerman JJH (1987). Visibility of mammaliam hepatic glycogen to the NMR experiment, in vivo. Magn Reson Med 5:462–465.PubMedCrossRefGoogle Scholar
  37. 37.
    Lipari G, Szabo A (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4564–4570.Google Scholar
  38. 38.
    Shaefer J (1973). Distributions of correlation times and the carbon-13 nuclear magnetic resonance spectra of polymers. Macromolecules 6:882–888.CrossRefGoogle Scholar
  39. 39.
    Wanson JJ, Drochmans PJ (1968). Rabbit skeletal muscle glycogen: a morphological and biochemical study of glycogen (β–particles isolated by the precipitation—centrifugation method. Cell Biol 38:130–150.CrossRefGoogle Scholar
  40. 40.
    Goldsmith E, Sprang S, Fletterick R (1982). Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J Mol Biol 156:411–427.PubMedCrossRefGoogle Scholar
  41. 41.
    Ramachandran C, Angelos KL, Walsh DA (1983). Hormonal regulation of the phosphorylation of glycogen synthase in perfused rat heart; effects of insulin, catecholamines, and glucagon. J Biol Chem 258:13377–13383.PubMedGoogle Scholar
  42. 42.
    Mellgren RL, Coulson M (1983). Coordinated feedback regulation of muscle glycogen metabolism: inhibition of purified phosphorylase phosphatase by glycogen. Biochem Biophys Res Commun 114:148–154.PubMedCrossRefGoogle Scholar
  43. 43.
    Villar-Pallasi C, Larner J (1970). Glycogen metabolism and glycolytic enzymes. Annu Rev Biochem 39:639–672.CrossRefGoogle Scholar
  44. 44.
    Nuttall FQ, Gannon MC (1989). An improved assay for hepatic glycogen synthase in liver extracts with emphasis on synthase R. Anal Biochem 178:311–319.PubMedCrossRefGoogle Scholar
  45. 45.
    Blackmore PF, Strickland G, Bocckino SB, Exton JH (1986). Mechanism of hepatic glycogen synthase inactivation induced by Ca+2-mobilizing hormones. Biochem J 237:235–242.PubMedGoogle Scholar
  46. 46a.
    Rasmussen H (1986). The calcium messenger system. N Engl J Med 314:1094–1101.PubMedCrossRefGoogle Scholar
  47. 46b.
    Rasmussen H (1986). The calcium messenger system. N Engl J Med 314: 1164–1170.PubMedCrossRefGoogle Scholar
  48. 47.
    Yamada T, Sugi H (1987). 31P-NMR study of the regulation of glycogenosis in living skeletal muscle. Biochim Biophys Acta 931: 170–174.PubMedCrossRefGoogle Scholar
  49. 48.
    Griffiths JR (1981). Non-covalent control of glycogenosis in muscle. In Hue L, Van de Werve G (eds.), Short-Term Regulation of Liver Metabolism. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 77–91.Google Scholar
  50. 49.
    Mallet RT, Hartman DA, Bunger R (1990). Glucose reqirement for postischemic recovery of perfused working heart. Eur J Biochem 188: 481–493.PubMedCrossRefGoogle Scholar
  51. 50.
    Gannon MC, Nuttall FQ (1984). Effect of prolonged starvation on glycogen synthase and glycogen synthase phosphatase activity in rat heart. J Nutr 114:2147–2154.PubMedGoogle Scholar
  52. 51.
    Miller TB (1983). Altered regulation of cardiac glycogen metabolism in spontaneously diabetic rats. Am J Physiol 245:E379–E383.PubMedGoogle Scholar
  53. 52.
    Garlick PB, Radda GK, Seeley PJ (1979). Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem J 184:547–554.PubMedGoogle Scholar
  54. 53.
    Malloy CR, Matthews PM, Smith MB, Radda GK (1986). Influence of propranolol on acidosis and high energy phosphates in ischaemic myocardium of the rabbit. Cardiovasc Res 20:710–720.PubMedCrossRefGoogle Scholar
  55. 54.
    Allen DG, Morris PG, Orchard CH, Pirolo JS (1985). A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol 361:185–204.PubMedGoogle Scholar
  56. 55.
    Bailey IA, Williams SR, Radda GK, Gadian DK (1981). Activity of phosphorylase in total global ischaemia in the rat heart. Biochem J 196:171–189.PubMedGoogle Scholar
  57. 56.
    Kupriyanov VV, Lakomkin VL, Steinschneider AY, Severina MY, Kapelko VI, Ruuge EK, Saks VA (1988). Relationships between pre-ischemic ATP and glycogen content and postischemic recovery of rat heart. Mol Cell Cardiol 20:1151–1162.CrossRefGoogle Scholar
  58. 57.
    Morgan HE, Parmeggiani A (1964). Regulation of glycogenolysis in muscle. II. Control of glycogen phosphorylase reaction in isolated perfused heart. J Biol Chem 239:2435–2439PubMedGoogle Scholar
  59. 58.
    Randle PJ, Tubbs PK (1979). Carbohydrate and fatty acid metabolism. In The Handbook of Physiology. The Cardiovascular System I. Bethesda: American Physiology Society, pp. 805–844.Google Scholar
  60. 59.
    Braunwald E, Kloner RA (1982). The stunned myocardium: prolonged, post ischemic ventricular dysfunction. Circulation 66:1146–1149.PubMedCrossRefGoogle Scholar
  61. 60.
    Hollis DP, Nunnally RL, Jacobus WE, Taylor GJ (1977). Detection of regional ischemia in perfused beating hearts by phosphorus nuclear magnetic resonance. Biochem Biophys Res Commun 75:1086–1091.PubMedCrossRefGoogle Scholar
  62. 61.
    Salhany JM, Pieper GM, Wu S, Todd GL, Clayton FC, Eliot RS (1979). 31P nuclear magnetic resonance measurement of cardiac pH in perfused guinea-pig hearts. J Mol Cell Cardiol 11:601–610.PubMedCrossRefGoogle Scholar
  63. 62.
    Cornblath M, Randle PJ, Parmeggiani A, Morgan HE (1963). Regulation of glycogenolysis in muscle: effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart. J Biol Chem 238:1592–1597.PubMedGoogle Scholar
  64. 63.
    Scheuer J, Stezoski SW (1970). Protective role of increased myocardial glycogen stores in cardiac anoxia in the rat. Circ Res 27:835–848.PubMedCrossRefGoogle Scholar
  65. 64.
    Kingsley-Hickman PB, Sako EY, Yang MQ, Zimmer SD, Ugurbil K, Foker JE, From AH (1991). Ischemic contracture begins when anaerobic glycolysis stops: a 31P-NMR study of isolated rat hearts. Am J Physiol 26l:H469–H478.Google Scholar
  66. 65.
    Neurohr KJ, Gollin G, Barrett EJ, Shulman RG (1983). In vivo 31P-NMR studies of myocardial high energy phosphate metabolism during anoxia and recovery. FEBS Lett 159: 207–210.PubMedCrossRefGoogle Scholar
  67. 66.
    Larner J, Illingworth B, Cori GT, Cori CF (1952). Structure of glycogens and amylopectins II. Analysis by stepwise enzymatic degradation. J Biol Chem 199:641–651.PubMedGoogle Scholar
  68. 67.
    Kennedy LD, Kirkman BR, Lomako J, Rodriguez IR, Whelan WJ (1985). In Berman MC, Gevers W, Opie LH (eds.), Membranes and Muscle. Oxford: IRL Press, Oxford/ICSU Press, pp. 65–84.Google Scholar
  69. 68.
    Laughlin MR, Barrett EJ, David M, Petit WA, Shulman RG (1989). The order of glycogen degradation in rat liver measured in vivo with 13C-NMR (abstract). Annual Meeting of the SMRM, Vol. 1, p. 260.Google Scholar
  70. 69.
    Devos P, Hers H-G (1979). A molecular order in the synthesis and degradation of glycogen in the liver. Eur J Biochem 99:161–167.PubMedCrossRefGoogle Scholar
  71. 70.
    Devos P, Hers H-G (1980). Glycogen in rat adipose tissue: sequential synthesis and random degradation. Biochem Biophys Res Commun 95:1031–1036.PubMedCrossRefGoogle Scholar
  72. 71.
    Birch GG, Lee EYC, Hems DA (1974). Structure and turnover of rat hepatic glycogen during metabolic activity. Int J Biochem 5:867–873.CrossRefGoogle Scholar
  73. 72.
    Hardin C, Kushmerick M (1990). Glycogen turnover in vascular smooth muscle studied by 13C-NMR (abstract). Ninth Annual Meeting of the SMRM, Vol. 3, p. 1138.Google Scholar
  74. 73.
    Youn JH, Bergman RN (1987). Patterns of glycogen turnover in liver characterized by computer modeling. Am J Physiol 253:E360–E369.PubMedGoogle Scholar
  75. 74.
    Todd GL, Pieper GM, Clayton FC, Eliot RS (1979). Heterogeneity in distribution of cardiac glycogen following isoproterenol infusions in the dog. Histochem J 11:425–434.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Maren R. Laughlin

There are no affiliations available

Personalised recommendations