Interpretation of Endothelial Structure Related to Tumor and Atherosclerotic Blood Vessels

  • James G. Walmsley
Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 10)

Abstract

Scanning electron microscopy (SEM) of vascular corrosion casts provides an opportunity to gain specific information about the luminal cellular lining of blood conduits. In addition to observation of the pattern, distribution, and density of this cellular layer, more subtle changes may be detectable. However, the determination of any of this information requires appropriate preparative procedures for highlighting the features being evaluated. For the purposes of this chapter, the discussion is primarily limited to the cellular lining of blood vessels, the vascular endothelium, and the alterations that are associated with experimental tumors and atherosclerosis. It is then possible to use the proper interpretation of endothelial surface structure to comment on the disease process itself.

Keywords

Cholesterol Anisotropy Foam Heparin Shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark ER, Clark EL. Observations on living arteriovenous anastomoses as seen in transparent chambers introduced into the rabbit’s ear. Am J Anat 54: 229–286, 1934.CrossRefGoogle Scholar
  2. 2.
    Warren BA. Tumor angiogenesis. In: Peterson HI (ed.), Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors, CRC Press, Boca Raton, FC pp 49–75, 1979.Google Scholar
  3. 3.
    Richardson M, Parbtani A. Identification of nondenuding endothelial injury by scanning electron microscopy. Scann Microsc 1: 1315–1326, 1987.Google Scholar
  4. 4.
    Reidy MA. Biology of disease. A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53: 513–520, 1985.PubMedGoogle Scholar
  5. 5.
    Reidy MA, Schwartz SM. Endothelial injury and regeneration. IV. Endotoxin: A nondenuding injury to aortic endothelium. Lab Invest 48: 25–34, 1983.PubMedGoogle Scholar
  6. 6.
    Gotlieb AI, Wong MKK, Boden P, Fone AC. The role of the cytoskeleton in endothelial repair. Scann Microsc 1: 1715–1726, 1987.Google Scholar
  7. 7.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman J, Klagsbrun M. Angiogenic factors. Science 235: 442–447, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Nilsson J. Growth factors in the pathogenesis of atherosclerosis. Atherosclerosis 62: 185–199, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Old LJ. Tumor necrosis factor (TNF). Science 230: 630–632, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Bell FP, Adamson IL, Schwartz CJ. Aortic endothelial permeability to albumin: Focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exper Mol Pathol 20: 57–68, 1974.CrossRefGoogle Scholar
  12. 12.
    Bellet RE, Mastrangelo MJ. Malignant melanoma: Investigations in the nude mouse. In: Fogh J, Giovanella BC (eds.), The Nude Mouse in Experimental and Clinical Research, Academic Press, pp 511–5519, 1982.Google Scholar
  13. 13.
    Ingerman-Wojenski CM, Sedar AW, Nissenbaum M, Silver MJ, Klurfeld DM, Kritchevsky D. Early morphological changes in the endothelium of a peripheral artery of rabbits fed an atherogenic diet. Exp Mol Pathol 38: 48–60, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz SM, Benditt EP. Cell replication in the aortic endothelium: A new method for study of the problem. Lab Invest 28: 699–707, 1973.PubMedGoogle Scholar
  15. 15.
    Laschi R, Pasquinelli G, Versura P. Scanning electron microscopy application in clinical research. Scann Microsc 1: 1771–1795, 1987.Google Scholar
  16. 16.
    Moore S. Pathogenesis of atherosclerosis. Metabolism 34: 13–16, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Luscher EF. The role of blood cells and or the vessel wall in the induction of intravascular coagulation. Klin Wochenschr 60: 710–712, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Haudenschild CC, Prescott MF, Chobanian AV. Effects of hypertension and its reversal on aortic intima lesions of the rat. Hypertension 2: 33–44, 1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Langille BL, Adamson SL. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48: 481–488, 1981.PubMedCrossRefGoogle Scholar
  20. 20.
    Reidy MA, Langille BL. The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 32: 276–289, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Warren BA. The vascular morphology of tumors. In: Peterson HI (ed.), Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors, CRC Press, Boca Raton, FL pp 1–47, 1979.Google Scholar
  22. 22.
    Konerding MA, Steinberg F, Budach V. The vascular system of xenotransplanted tumors — scanning electron and light microscopic studies. Scann Microsc 3: 327–336, 1989.Google Scholar
  23. 23.
    Walmsley JG, Granter SR, Hacker MP, Moor AL, Ershler WB. Tumor vasculature in young and old hosts: Scanning electron microscopy of microcorrosion casts with microangiography, light microscopy and transmission electron microscopy. Scann Microsc 1: 823–830, 1987.Google Scholar
  24. 24.
    Glagov S, Zarins CK. Quantitating atherosclerosis: Problems of definition. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation, Springer-Verlag, New York, pp 11–35, 1983.Google Scholar
  25. 25.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53: 502–514, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Friedman MH, Deters OJ, Mark FF, Basgeron CB, Hutchins GM. Arterial geometry affects haemodynamics: A potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231, 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    McMillan DE. Blood flow and the localization of atherosclerotic plaques. Stroke 16: 582–587, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Rowland FN, Donovan JJ, Picciano PT, Wilner GD, Kreutzer DL. Fibrin-mediated vascular injury. Identification of fibrin peptides that mediate endothelial cell retraction. Am J Pathol 117: 418–428, 1984.PubMedGoogle Scholar
  29. 29.
    DePalma RG. Angiography in atherosclerosis: Advantages and limitations. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation, Springer-Verlag, New York, pp 99–125, 1983.Google Scholar
  30. 30.
    Cornhill JF, Levesque MJ, Hendrick EF, Nerem RM, Kilman JW, Vasko JS. Quantitative study of the rabbit aortic endothelium using vascular casts. Atherosclerosis 35: 321–337, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Cornhill JF, Akins D, Hutson M, Chandler AB. Localization of atherosclerotic lesions in the human basilar artery. Atherosclerosis 35: 77–86, 1980.PubMedCrossRefGoogle Scholar
  32. 32.
    Underwood EE. Quantitative Stereology. Addison-Wesley Publishing, London, 1970.Google Scholar
  33. 33.
    Laschi R. Contribution of scanning electron microscopy and associated analytical techniques to the study of atherosclerotic disease. Scann Electron Microsc. III: 1215–1222, 1985.Google Scholar
  34. 34.
    Cornhill JF, Bond MG. Morphology: Morphometric analysis of pathology specimens. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation Springer-Verlag, New York, pp 67–78, 1983.Google Scholar
  35. 35.
    Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross. Fatty streak expansion and maturation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 24–34, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 9–23, 1987.PubMedCrossRefGoogle Scholar
  37. 37.
    Goode TB, Davies PF, Reidy MA, Bowyer DE. Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit. Atherosclerosis 27: 235–251, 1977.PubMedCrossRefGoogle Scholar
  38. 38.
    Svendsen E. Focal endothelial cell injury in rabbit aorta, aggravation of injury by 2 days of cholesterol feeding. Acta Path Microbiol Scand 87: 123–130, 1979.Google Scholar
  39. 39.
    Faggiotta A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4: 341–351, 1984.CrossRefGoogle Scholar
  40. 40.
    Faggiotta A, Ross R, Harker L. Studies of hypercholesteremia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4: 323–340, 1984.CrossRefGoogle Scholar
  41. 41.
    Ershler WB, Berman E, Moore AL. Slower B16 melanoma growth but geater pulmonary colonization in calorie-restricted mice. J Nat Cancer Inst 76: 81–85, 1986.PubMedGoogle Scholar
  42. 42.
    Ershler WB, Gamelli RL, Moore AL, Hacker MP, Blow AJ. Experimental tumors and aging: Local factors that may account for the observed age advantage in the B16 murine melanoma model. Exp Gerontol 19: 367–376, 1984.PubMedCrossRefGoogle Scholar
  43. 43.
    Solesvik OV, Rofstad EK, Brustad T. Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer 45: 557–567, 1982.CrossRefGoogle Scholar
  44. 44.
    Grunt TW, Lametschwandtner A, Karrer K. The characteristic structural features of the blood vessels of the Lewis lung carcinoma. (A light microscopic and scanning electron microscopic study.). Scann Electron Microsc. II: 575–589, 1986.Google Scholar
  45. 45.
    Grunt TW, Lametschwandtner A, karrer K, Staindl O. The angioarchitecture of the Lewis lung carcinoma in laboratory mice. (A light microscopic and scanning electron microscopic study.). Scann Electron Microsc II: 557–573, 1986.Google Scholar
  46. 46.
    Jain RK. Determinants of tumor blood flow: A review. Cancer Res 48: 2641–1658, 1988.PubMedGoogle Scholar
  47. 47.
    Rubin P, Casarett G. Microcirculation of tumors. Part II: The supervascularized state of irradiated regressing tumors. Clin Radiol 17: 346–355, 1966.PubMedCrossRefGoogle Scholar
  48. 48.
    Rubin P, Casarett G. Microcirculation of tumors. Part I: Anatomy, function, and necrosis. Clin Radiol 17: 220–229, 1966.PubMedCrossRefGoogle Scholar
  49. 49.
    Song CW. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors: Brief communication. J Natl Cancer Inst 60: 711–713, 1978.Google Scholar
  50. 50.
    Song CW, Rhee JG, Levitt SH. Blood flow in normal tissues and tumors during hyperthermia. J Nat Cancer Inst 64: 119–124, 1980.PubMedGoogle Scholar
  51. 51.
    Steinberg V, Konerding MA, Korver G, Streffer C. Examination of the necrosis in xenotransplanted tumors — quantitative measurements and correlations with the vascular system, cell-proliferation and tumor growth. In: Int. Conf. on Tumor Necrosis Factor and Related Cytotoxins 175: 102, 1987.Google Scholar
  52. 52.
    Levesque MJ, Cornhill JF, Nerem RM. Vascular casting. A new method for the study of arterial endothelium. Atherosclerosis 34: 457–467, 1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Roach MR, Hinton P, Fletcher J. Artifacts of localization of atherosclerosis in pinned aortas. Atherosclerosis 31: 1–10, 1978.PubMedCrossRefGoogle Scholar
  54. 54.
    Wetzel B, Albrecht RM. The evolution of correlative techniques for electron microscopy — An overview. Scann Microsc 3 (Suppl): 1–6, 1989.Google Scholar
  55. 55.
    Richardson M, Hatton MWC, Buchanan MR, Moore S. Scanning electron microscopy of normal rabbit aorta: Injury or artifact. J Ultrastruct Res 91: 159–173, 1985.PubMedCrossRefGoogle Scholar
  56. 56.
    Tindall A, Svendsen E. Diameter changes in rabbit aorta during fixation at physiological pressure. Atherosclerosis 50: 223–231, 1984.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirsch EZ, Chisolm GM III, Gibbons A. Quantitative assessment of changes in aortic dimensions in response to in situ perfusion fixation at the physiological pressures. Atherosclerosis 38: 63–73, 1981.PubMedCrossRefGoogle Scholar
  58. 58.
    Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17: 401–417, 1973.PubMedCrossRefGoogle Scholar
  59. 59.
    Gordon D, Guyton JR, Karnovsky MJ. Intimai alterations in rat aorta induced by stressful stimuli. Lab Invest Google Scholar
  60. 45.
    14–19, 1981.Google Scholar
  61. 60.
    Haudenschild CC, Gould KE, Quist WC, LoGerfo FW. Protection of endothelium in vessel segments excised for grafting. Circulation 64 (Suppl. II):II101-IIl 10, 1981.Google Scholar
  62. 61.
    Joris I, Majno G. Endothelial changes induced by arterial spasm. Am J Pathol 102: 346–358, 1981.PubMedGoogle Scholar
  63. 62.
    Buchanan MR, Richardson M, Hass TA, Hirsch J, Madri JA. Basement membrane underlying the vascular endothelium is not thrombogenic: In vivo and in vitro studies with rabbit and human tissue. Thromb Haemost 58: 698–704, 1987.PubMedGoogle Scholar
  64. 63.
    Miller BG, Evan AP, Bohlen HG. Exposure of vascular smooth muscle cells for analysis with the scanning electron microscope. Scann Microsc. 1: 1295–1313, 1987.Google Scholar
  65. 64.
    Murakami T. Vascular arrangement of the rat renal glomerulus. A scanning electron microscope study of corrosion casts. Arch Histol Jpn 34: 87–107, 1972.PubMedCrossRefGoogle Scholar
  66. 65.
    Hodde KC, Miodonski A, Bakker C, Veltman WAM. Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat’s cochlea. Scann Electron Microsc. II: 477–484, 1977.Google Scholar
  67. 66.
    Hodde KC, Miodonski A, Bakker C, Veltman WAM. Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat’s cochlea. Scann Electron Microsc II: 477–484, 1979.Google Scholar
  68. 67.
    Kardon RH, Kessel RG. SEM studies on vascular casts of the rat ovary. Scann Electron Microsc III: 743–750, 1979.Google Scholar
  69. 68.
    Nopanitaya W, Aghajanian JG, Gray LD. An improved plastic mixture for corrosion casting of the gastrointestinal microvascular system. Scann Electron Microsc. III: 751–756, 1979.Google Scholar
  70. 69.
    Phillips SJ, Rosenberg A, Meir-Levi D, Pappas E. Visualization of the coronary microvascular bed by light and scanning electron microscopy and X-ray in the mammalian heart. Scann Electron Microsc III: 735–742, 1979.Google Scholar
  71. 70.
    Reidy MA, Levesque MJ. A scanning electron microscopic study of arterial endothelial cells using vascular casts. Atherosclerosis 28: 463–470, 1977.PubMedCrossRefGoogle Scholar
  72. 71.
    Hodde KC, Nowell JA. SEM of microcorrosion casts. Scann Electron Microsc II (Suppl.): 89–106, 1980.Google Scholar
  73. 72.
    Kratky RG, Zeindler CM, Lo DKC, Roach MR. Quantitative measurements from vascular casts. Scann Microsc 3: 937–943, 1989.Google Scholar
  74. 73.
    Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts — technique and applications. Scann Electron Microsc II: 663–695, 1984.Google Scholar
  75. 74.
    Steeber DA, Erickson CM, Hodde KC, Albrecht RM. Vascular changes in popliteal lymph nodes due to antigen challenge in normal and lethally irradiated mice. Scann Microsc 1: 831–839, 1987.Google Scholar
  76. 75.
    Poole JCF, Sanders AG, Florey HW. The regeneration of aortic endothelium. J Path Bact 125: 133–143, 1958.CrossRefGoogle Scholar
  77. 76.
    Castenholz A. Interpretation of structural patterns appearing on corrosion casts of small blood and initial lymphatic vessels. Scann Microsc 3: 315–325, 1989.Google Scholar
  78. 77.
    Konerding MA, Blank M. The vascularization of the vertebral column of rats. Scann Microsc 1: 1727–1732, 1987.Google Scholar
  79. 78.
    Kratky RG, Roach MR. Scanning electron microscopy of early atherosclerosis in rabbits using aortic casts. Scann Microsc 2: 465–470, 1988.Google Scholar
  80. 79.
    Kratky RG, Roach MR. Endothelial cell morphometry near branch junctions of rabbit aorta. Can J Physiol Pharm 65: 1864–1871, 1987.CrossRefGoogle Scholar
  81. 80.
    Zeindler CM, Kratky RG, Roach MR. Quantitative measurements of early atherosclerotic lesions on rabbit aortae from vascular casts. Atherosclerosis 76: 245–255, 1989.PubMedCrossRefGoogle Scholar
  82. 81.
    Odgaard A, Jensen EB, Gundersen HJG. Estimation of structural anisotropy based on volume orientation: A new concept. J Microsc 157: 149–162, 1990.PubMedCrossRefGoogle Scholar
  83. 82.
    Iannaccone PM. Fractal geometry in mosaic organs: A new interpretation of mosaic pattern. FASEB J 4: 1508–1512, 1990.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • James G. Walmsley
    • 1
  1. 1.Department of Biomedical SciencesUniversity of Illinois College of Medicine at RockfordRockfordUSA

Personalised recommendations