Conformational Analysis of Profisetinidin Dimers

  • Carin A. Heifer
  • Wayne L. Mattice
Part of the Basic Life Sciences book series (BLSC, volume 59)


Steady-state and time-resolved fluorescence measurements show that profisetinidin dimers with a (4α → 8) interflavan bond exist as two rotamers in an approximately equal proportion. The 2,3-trans profisetinidin dimers with a 4β interflavan bond also exist as two rotamers, however, a higher fraction of one of the two rotamers is present. Molecular modeling with the Sybyl 5.41 force field shows two low energy conformations when rotating 360° around the interflavan bond defined by C3, C4, D8, D7. In fisetinidol-(4β → 8)-epicatechin, there is a high energy barrier at ϕ = 180° due to steric interference of the C-3 hydroxyl with the F-ring pyran oxygen. Lowest energy states are at ϕ = 90° and 240°. The energy barrier at ϕ = 180° is much lower for fisetinidol-(4α0 → 8)-epicatechin than observed in the 4β-linked isomer. A molecular dynamics trajectory was computed using Sybyl 5.41 for fisetinidol-(4β → 8)-epicatechin to study rotation about the interflavan bond. At 500 oK, rotation at the interflavan bond is slow with less than one rotation occurring in 50 ps.


Dihedral Angle Monomer Unit Conformational Analysis Heterocyclic Ring Molecular Dynamic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viswanadhan, V.N.; Mattice, W.L. Conformational analysis of the sixteen C(4)-C(6) and C(4)-C(8) linked dimers of (+)-catechin and (-)-epicatechin. J. Comput. Chem. 7:711 (1986).CrossRefGoogle Scholar
  2. 2.
    Porter, L.J.; Wong, R.Y.; Benson, M.; Chan, B.G.; Viswanadhan, V.N.; Gandour, R.D.; Mattice, W.L. Conformational analysis of flavans: 1H-NMR and molecular mechanical (MM2) studies for the benzpyran ring of 3′,4′,5,7-tetrahydroxyflavan-3-ols: the crystal and molecular structure of the procyanidin: (2R,3S,4R)-3′,4′,5,7-tetramethoxy-4-(2,4,6-trimethoxyphenyl)-flavan-3-ol. J. Chem. Res. (S):86, (M):830 (1986).Google Scholar
  3. 3.
    Bergmann, W.R.; Barkley, M.D.; Hemingway, R.W.; Mattice, W.L. Heterogeneous fluorescence decay of (4 → 6)-and (4 → 8)-linked dimers of (+)-catechin and (−)-epicatechin as a result of rotational isomerism. J. Am. Chem. Soc. 109:6614 (1987).CrossRefGoogle Scholar
  4. 4.
    Mattice, W.L. Conformational analysis of oligomeric proanthocyanidins. In: Hemingway, R.W.; Karchesy, J., (eds.), Chemistry and significance of condensed tannins. Plenum Press, New York p. 119 (1989).CrossRefGoogle Scholar
  5. 5.
    Cho, D.; Mattice, W.L.; Porter, L.J.; Hemingway, R.W. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4 β → 8 interflavan bonds. Polymer 30:1955 (1989).CrossRefGoogle Scholar
  6. 6.
    Cho, D.; Tian, R.; Porter, L.J.; Hemingway, R.W.; Mattice, W.L. Variations in the heterogeneity of the decay of the fluorescence in six procyanidin dimers. J. Am. Chem. Soc. 112:4273 (1990).CrossRefGoogle Scholar
  7. 7.
    Cho, D.; Porter, L.J.; Mattice, W.L. Conformations and time-resolved fluorescence of oligomers of (-)-epicatechin with Aβ → 8 interflavan bonds. Biopolymers 31:537 (1991).CrossRefGoogle Scholar
  8. 8.
    Engel, D.W.; Hattingh, M.; Hundt, H.K.L.; Roux, D.G. X-ray structure, conformation, and absolute configuration of 8-bromo-tetra-0-methyl-(-(-)-catechin. J. Chem. Soc, Chem. Commun.:695 (1978).Google Scholar
  9. 9.
    Fronczek, F.R.; Gannuch, G.; Mattice, W.L.; Tobiason, F.L.; Broeker, J.L.; Hemingway, R.W. Dipole moment, solution, and solid state structure of (-)-epicatechin, a monomer unit of procyanidin polymers. J. Chem. Soc. Perkin Trans. 2:1611 (1984).Google Scholar
  10. 10.
    Fronczek, F.R.; Gannuch, G.; Mattice, W.L.; Hemingway, R.W.; Chiari, G.; Tobiason, F.L.; Houglum, K.; Shanafelt, A. Preference for occupancy of axial positions by substituents bonded to the heterocyclic ring in penta-O-acetyl-(+)-catechin in the crystalline state. J. Chem. Soc. Perkin Trans. 2:1383 (1985).Google Scholar
  11. 11.
    Fronczek, F.R.; Hemingway, R.W.; McGraw, G.W.; Steynberg, J.P.; Helfer, C.A.; Mattice, W.L. Crystal structure and conformational analysis and molecular dynamics of tetra-O-methyl-(+)-catechin. Biopolymers [submitted].Google Scholar
  12. 12.
    Software available from Tripos Associates, Inc., St. Louis, Missouri.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Carin A. Heifer
    • 1
  • Wayne L. Mattice
    • 1
  1. 1.Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations