Structure of Procyanidin Oligomers Isolated From Grape Seeds in Relation to Some of their Chemical Properties

  • Véronique Cheynier
  • Jacques Rigaud
  • Jorge M. Ricardo da Silva
Part of the Basic Life Sciences book series (BLSC, volume 59)


A micro-method using thiolysis followed by HPLC monitoring of the degradation products was developed to determine the structure of procyanidin oligomers available in small quantities (≤ 0.1 mg). It was successfully applied to a series of procyanidins isolated from grape seeds, allowing the identification of procyanidins dimers B5 to B8 linked by C4 → C6 bonds, six procyanidin trimers with C4 → C8 and C4 → C6 linkages, and six galloylated dimers and trimers, along with the four C4 → C8 linked dimers, Bl to B4. The influence of procyanidin structural variations on their interactions with proteins, free radical scavenging effect, and oxidation was studied using these compounds. Protein-procyanidin interactions increased with the degree of polymerization, the number of galloyl substituents, and the extent of C4→ C6 linkages. Galloylation increased scavenger capacity of procyanidin dimers for Superoxide anion (O2 -•) and hydroxyl (su•OH) radicals. The type of C → C linkage and the esterification position were also important. None of the molecules tested was oxidizable by grape polyphenoloxidase, but they were all oxi-dized by the enzymically generated caffeoyl tartaric acid o-quinones. In addition, galloylated procyanidins seemed to undergo condensation reactions faster than the corresponding non-galloylated ones, even though their rate of oxidation was similar.


Condensed Tannin Grape Seed Grape Seed Extract Raney Nickel Azuki Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourzeix, M. The leucoanthocyanins of grapes and white wines. C.R. Acai. Agric. Fr. 56:983 (1970).Google Scholar
  2. 2.
    Weinges, K.; Piretti, M.V. Isolation of procyanidin Bl from grapes. Liebigs Ann. Chem. 748:218 (1971).CrossRefGoogle Scholar
  3. 3.
    Lea, A.G.H.; Bridle, P.; Timberlake, C.F.; Singleton, V.L. The procyanidins of white grapes and wines. Am. J. Enol. Vitic. 30:289 (1979).Google Scholar
  4. 4.
    Czochanzka, Z.; Foo, L.Y.; Porter, L.J. Compositional changes in lower molecular weight flavans during grape maturation. Phytochemistry 18:1819 (1979).CrossRefGoogle Scholar
  5. 5.
    Haslam, E. In vino veritas: oligomeric procyanidins and the ageing of red wines. Phytochtmistry 19:2577 (1980).CrossRefGoogle Scholar
  6. 6.
    Singleton, V.L.; Noble, A.C. Bitterness and astringency of phenolic fractions in wine. J. Agric. Food Chem. 28:675 (1980).CrossRefGoogle Scholar
  7. 7.
    Romeyer, F.M.; Macheix, J.J.; Sapis, J.C. Changes and importance of oligomeric procyanidins during maturation of grape seeds. Phytochemistry 25:219 (1986).CrossRefGoogle Scholar
  8. 8.
    Bourzeix, M.; Weyland, D.; Heredia, N. Etude des catéchines et des procyanidols de la grappe de raisin, du vin et d’autres dérivés de la vigne. Bull. O.I.V. 669:1171 (1986).Google Scholar
  9. 9.
    Lee, C.Y.; Jaworski, A.W. Phenolic compounds in white grapes grown in New York. Am. J. Enol. Vitic. 38:277 (1987).Google Scholar
  10. 10.
    Boukharta, M. Etude des flavonoides de Vitis vinifera: structure des proanthocyanidines des pépins de raisin, des sarments et des feuilles de vigne. PhD. Dissertation, I.N.P.L., Nancy, France (1988).Google Scholar
  11. 11.
    Oszmianski, J.; Sapis, J.C. Fractionation and identification of some low molecular weight grape seed phenolics. J. Agric. Food Chem. 37:1293 (1989).CrossRefGoogle Scholar
  12. 12.
    Lee, C.Y.; Jaworski, A.W. Identification of some phenolics in white grapes. Am. J. Enol. Vitic. 41:87 (1990).Google Scholar
  13. 13.
    White, T. Tannins: their occurrence and significance. J. Sci. Food Agric. 8:377 (1957).CrossRefGoogle Scholar
  14. 14.
    Gramshaw, J.W. Phenolic constituents of beer and brewing materials. The role of polyphenols in the formation of non-biological haze. J. Inst. Brew. 73:455 (1967).CrossRefGoogle Scholar
  15. 15.
    Eastmond, R; Gardner, R. J. Effect of various polyphenols on the rate of haze formation in beer. J. Inst. Brew. 80:192 (1974).CrossRefGoogle Scholar
  16. 16.
    Simpson, R.F. Factors affecting oxidative browning of white wine. Vitis 21:233 (1982).Google Scholar
  17. 17.
    Asano, K.; Ohtsu, K.; Shinagawa, K.; Hashimoto, N. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beer and the formation of chill haze. Agric. Biol. Chem. 48:1139 (1984).CrossRefGoogle Scholar
  18. 18.
    Beart, E.; Lilley, T.L.; Haslam, E. Polyphenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalyzed decomposition; observations on some polymeric proanthocyanidins. J. Chem. Soc., Perkin Trans 2:1439 (1985).Google Scholar
  19. 19.
    Cheynier V.; Rigaud, J.; Souquet, J.M.; Barillore, J.M.; Moutounet, M. Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am. J. Enol. Vitic. 40:36 (1989).Google Scholar
  20. 20.
    Bate-Smith, E.C. Astringency in foods. Food 23:124 (1954).Google Scholar
  21. 21.
    Joslyn, M.A.; Goldstein, J.L. Astringency of fruit and fruit products in relation to phenolic contents. Adv. Food Res. 13:179 (1964).PubMedCrossRefGoogle Scholar
  22. 22.
    Bate-Smith, E.C. Haemanalysis of tannins: The concept of relative astringency. Phytochtmistry 12:907 (1973).CrossRefGoogle Scholar
  23. 23.
    Haslam, E.; Lilley, T.H. Natural astringency in foodstuffs. A molecular interpretation. Crit. Rev. Food Sci. 27:1 (1988).CrossRefGoogle Scholar
  24. 24.
    Tamir, M.; Alumot, E. Inhibition of digestive enzymes by condensed tannins from green and ripe carobs. J. Agric. Food Chem. 26:784 (1969).Google Scholar
  25. 25.
    Milic, B.L.; Stojanovic, S.; Vucrevic, N. Lucerne tannins. II. Isolation of tannins from lucerne, their nature and influence on digestive enzymes in vitro. J. Sci. Food. Agric. 23:1157 (1972).CrossRefGoogle Scholar
  26. 26.
    Oh, HJ.; Hoff, J.E. Effect of condensed grape tannins on the in vitro activity of digestive proteases and activation of their zymogens. J. Food Sci. 51:577 (1986).CrossRefGoogle Scholar
  27. 27.
    Asquith, T.N.; Uhlig, J.; Mehansho, H.; Putman, L.; Carlson, D.M.; Butler, L. Binding of condensed tannins to salivary proline-rich glycoproteins: the role of carbohydrate. J. Agric. Food Chem. 35:331 (1987).CrossRefGoogle Scholar
  28. 28.
    Hara, Y.; Honda, M. The inhibition of α-amylase by tea polyphenols. Agric. Biol. Chem. 54:1939 (1990).CrossRefGoogle Scholar
  29. 29.
    Rhoades, D.F.; Gates, R.G. Towards a general theory of plant antiherbivore chemistry. In: Wallace, J.W.; Mansell, R.L. (eds) Biochemical interaction between plants and insects. (Recent Advances in Biochemistry) Plenum Press, New York (1976).Google Scholar
  30. 30.
    Kumar, R.; Singh, M. Tannins-their adverse role in ruminant nutrition. J. Agric. Food Chem. 32:447 (1984).CrossRefGoogle Scholar
  31. 31.
    Butler, L.G. Effects of condensed tannin on animal nutrition. In: Hemingway, R.W.; Karchesy, J. J. (eds) Chemistry and significance of condensed tannins. Plenum Press, New York (1989).Google Scholar
  32. 32.
    Pierpoint, W.S.; Ireland, R.J.; Carpenter, J.M. Modification of proteins during the oxidation of leaf phenols: reaction of potato virus X with chlorogenoquinone. Phytochemistry 16:29 (1977).CrossRefGoogle Scholar
  33. 33.
    Takechi, M.; Tanaka, Y.; Nonaka, G.I.; Nishioka, I. Structure and antiherpetic activity among the tannins. Phytochemistry 24:2245 (1985).CrossRefGoogle Scholar
  34. 34.
    Uchida, S.; Edamatsu, R.; Hiramatsu, M.; Mori, A.; Nonaka, G.I.; Nishioka, I.; Niwa, M.; Ozaki, M. Condensed tannins scavenge active oxygen free radicals. Med. Sci. Res. 15: 831 (1987).Google Scholar
  35. 35.
    Ariga, T.; Hamano, M. Radical scavenging action and its mode in procyanidin B-l and B-3 from azuki beans to peroxyl radicals. Agric. Biol. Chem. 54:2499 (1990).CrossRefGoogle Scholar
  36. 36.
    Ricardo da Silva, J.M.; Rigaud, J.; Cheynier, V.; Cheminat, A.; Moutounet, M. Procyanidin dimers and trimers from grape seeds. Phytochemistry 30:1259 (1990).CrossRefGoogle Scholar
  37. 37.
    Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part I. Introduction. The isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc, Perkin Trans. 1:1387 (1972).CrossRefGoogle Scholar
  38. 38.
    Foo, L.Y.; Karchesy, J.J. Procyanidin dimers and trimers from Douglas-fir inner bark. Phytochemistry 28:1743 (1989).CrossRefGoogle Scholar
  39. 39.
    Flechter, A.C.; Porter, L.J.; Haslam, E.; Gupta, R.K. Plant proanthocyanidins. Part 3. Conformational and configurational studies of natural procyanidins. J. Chem. Soc., Perkin Trans. 1:1628 (1977).Google Scholar
  40. 40.
    Foo L.Y.; Porter, L.J. Synthesis and conformation of procyanidin diastereoisomers. J. Chem. Soc., Perkin Trans. 1:1535 (1983).CrossRefGoogle Scholar
  41. 41.
    Hemingway, R.W.; Karchesy, J.J.; McGraw, G.W.; Wielsek, R.A. Heterogeneity of inter-flavanoid bond location in Loblolly pine bark procyanidins. Phytochemistry 22:275 (1983).CrossRefGoogle Scholar
  42. 42.
    Kolodziej, H. Synthesis and characterization of procyanidin dimers as their peracetates and octamethyl ether derivatives. Phytochemistry 25:1209 (1986).CrossRefGoogle Scholar
  43. 43.
    Hemingway, R.W.; McGraw, G.M. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 3:421 (1983).CrossRefGoogle Scholar
  44. 44.
    Morimoto, S.; Nonaka, G.-L; Nishioka, I. Tannins and related compounds. XXXVIII. Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from Cassia bark (Cinnamomum cassia Blume). Chem. Pharm. Bull. 34:633(1986).CrossRefGoogle Scholar
  45. 45.
    Kolodziej, H. Thiolysis of birch bark procyanidins: structural dependence in formation of 2,3-cis-3,4-cis-flavan-4-benzylthioethers from procyanidins. Phytochemistry 29:1671 (1990).CrossRefGoogle Scholar
  46. 46.
    Rigaud, J.; Perez-IIzarbe, J.; Ricardo da Silva, J.M.; Cheynier, V. Micro method for the identification of proanthocyanidin using thiolysis monitored by high-performance chromatography. J. Chromatogr. 540:401 (1991).CrossRefGoogle Scholar
  47. 47.
    McManus, J.P.; Davis, K.G.; Beart, J.E.; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Polyphenol interactions. Part 1. Introduction. Some observations on the reversible complexation of proteins and polysaccharide. J. Chem. Soc., Perkin Trans. 2:1429(1985).Google Scholar
  48. 48.
    Hagerman, A.E. Chemistry of tannin-protein complexation. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York (1989).Google Scholar
  49. 49.
    Ya, C; Gaffney, S.H.; Lilley, T.H.; Haslam, E. Carbohydrate-polyphenol complexation. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York (1989).Google Scholar
  50. 50.
    Ricardo da Silva, J.M.; Cheynier, V.; Souquet, J.M.; Moutounet, M.; Cabanis, J.C.; Bourzeix, M. Interaction of grape seed procyanidins with various proteins. Effects in a red wine. J. Sci. Food Agric. 57:111 (1991).CrossRefGoogle Scholar
  51. 51.
    Saulnier, L.; Brillouet, J.M. An arabinogalactan-protein from the pulp of grape berries. Carbohydrate Research 188:137 (1989).CrossRefGoogle Scholar
  52. 52.
    Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 259:4494 (1981).Google Scholar
  53. 53.
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 139:285 (1974).PubMedGoogle Scholar
  54. 54.
    Porter, L.J.; Woodruffe, J. Haemanalysis: the relative astringency of proanthocyanidin polymers. Phytochemistry 23:1255 (1984).CrossRefGoogle Scholar
  55. 55.
    Jouve, C; Cabanis, J.C.; Bourzeix, M.; Hérédia, N.; Rosec, J.P.; Vialatte, C. Teneure en catéchines et procyanidols de vins blancs et rosés. Effets du collage par la caséine. Rev. F. Oenol. 117:14 (1989).Google Scholar
  56. 56.
    Lee, C.Y.; Jaworski, A.W. Phenolics and browning potential of white grapes grown in New York. Am. J. Enol. Vitic. 39:337 (1988).Google Scholar
  57. 57.
    Rigaud, J.; Cheynier, V.; Souquet, J.M.; Moutounet, M. Influence of must composition on phenolic oxidation kinetics. J. Sci. Food Agric. 54:55(1991).CrossRefGoogle Scholar
  58. 58.
    Cheynier, V.; Ricardo da Silva, J.M. Oxidation of grape procyanidins in model solutions containing trans-caffeoyltartaric acid and polyphenoloxidase. J. Agric. Food Chem. 39:1047 (1991).CrossRefGoogle Scholar
  59. 59.
    Cheynier, V.; Osse, C; Rigaud, J. Oxidation of grape juice phenolic compounds in model solutions. J. Food Sci. 53:1729 (1988).CrossRefGoogle Scholar
  60. 60.
    Cheynier, V.; Basire, N.; Rigaud, J. Mechanism of trans-caffeoyltartaric acid and catechin oxidation in model solutions containing grape polyphenoloxidase. J. Agric. Food Chem. 37:1069 (1989).CrossRefGoogle Scholar
  61. 61.
    Cheynier, V.; Rigaud, J.; Moutounet, M. High-performance liquid Chromatographic determination of the free o-quinones of trans-caffeoyltartaric acid, 2-S-glutathionylcaffeoyltartaric acid, and catechin in grape must. J. Chromatogr. 472:428 (1989).CrossRefGoogle Scholar
  62. 62.
    Ariga, T; Koshiyama, I.; Fukushima, D. Antioxidative properties of procyanidin Bl and B3 from Azuki beans in aqueous systems. Agric. Biol. Chem. 52:2717 (1988).CrossRefGoogle Scholar
  63. 63.
    Masquelier, J. Physiological effects of wine. His share in alcoholism. Bull. O.I. V. 689:554 (1988).Google Scholar
  64. 64.
    Ricardo da Silva, J.M.; Darmon, N.; Fernandez, Y.; Mitjavila, S. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. Food Chem. 39:1549 (1991).CrossRefGoogle Scholar
  65. 65.
    Fridovich, I. Quantitative aspects of the production of Superoxide radical anion radical by milk xanthine oxidase. J. Biol. Chem. 245:4053 (1970).PubMedGoogle Scholar
  66. 66.
    Halliwell, B; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: a simple “testtube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 165:215 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Véronique Cheynier
    • 1
  • Jacques Rigaud
    • 1
  • Jorge M. Ricardo da Silva
    • 2
  1. 1.Institute for Wine ProductsNational Institute for Agriculture ResearchMontpellierFrance
  2. 2.Institute of AgronomyTechnical University of LisboaLisboa CodexPortugal

Personalised recommendations