Applications of Recombination

  • H. P. Summers
  • W. J. Dickson
Part of the NATO ASI Series book series (NSSB, volume 296)

Abstract

This paper is concerned with recombination of free electrons with atomic ions. The applications of recombination to be described are in the study and analysis of various types of ionised plasmas. Although other recombination processes such as charge exchange can be very important in, for example, neutral beam heated plasmas they are not the subject of discussion in this work. In all studies of plasmas it is certainly necessary to know the ionisation state of the species in the plasma and probably also the total radiated power. We might introduce the term, ‘the standard model’, to describe a plasma collisionally excited by electrons, in equilibrium, at low density, in which free electron recombination balances collisional ionisation. That is
$${N_e}{N^{(z + 1)}}\alpha (z + 1 \to z) = {N_e}{N^{(Z)}}S(z \to z + 1) $$
(1)
with N e , the electron density, N (z), the number density of the element X in charge state z, α, the recombination coefficient and S the ionisation coefficient. In the standard model recombination does not take place on boundary surfaces and charge transfer processes with other atoms or ions do not play a role. The α and S apply in a non- stationary state as
$$\begin{gathered}\frac{{\partial {N^{(z)}}}}{{\partial t}} + \nabla .{\Gamma ^{(z)}} = {N_e}{N^{(z - 1)}}S(z - 1 \to z) \hfill \\- Ne{N^{(z)}}\left\{ {\alpha (z \to z - 1) + S(z \to z + 1)} \right\} \hfill \\ + {N_e}{N^{(z + 1)}}\alpha (z + 1 \to z) \hfill \\ \end{gathered} $$
(2)

Keywords

Nickel Microwave Recombination Boron Selenium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.H. Menzel and C.L. Peckeris, Mon. Not. R. Astr. Soc., 96, 77 (1935).ADSMATHGoogle Scholar
  2. [2]
    J.G. Baker and D.H. Menzel, Astrophys. J., 88, 52 (1938).ADSMATHCrossRefGoogle Scholar
  3. [3]
    M.J. Seaton, Mon. Not. R. Astr. Soc., 119, 90 (1959).MathSciNetADSGoogle Scholar
  4. [4]
    A. Burgess, Mon. Not. R. Astr. Soc., 118, 477 (1958).ADSGoogle Scholar
  5. [5]
    M. Salem and M. Brocklehurst, Astrophys. J. Supple., 39, 633 (1979).ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Gordon and C.M. Walmsley, Astrophys. J. Supple., 365, 606 (1990).ADSCrossRefGoogle Scholar
  7. [7]
    P.R. Roelfsema and W.M. Goss, Astron. & Astrophys. Supple., 87, 177 (1991).ADSGoogle Scholar
  8. [8]
    J.E. Dyson, Astrophys. J., 155, 47 (1969).ADSCrossRefGoogle Scholar
  9. [9]
    A. Burgess and H.P. Summers, Mon. Not. R. Astr. Soc., 174, 345 (1976).ADSGoogle Scholar
  10. [10]
    A. Burgess and M.J. Seaton, Mon. Not.R. Astr. Soc., 120, 121 (1960a).MathSciNetADSMATHGoogle Scholar
  11. [11]
    A. Burgess and M.J. Seaton, Mon. Not.R. Astr. Soc., 120, 76 (1960b).ADSGoogle Scholar
  12. [12]
    P.J. Storey, Mon. Not. R. Astr. Soc., 195, 27p (1981).ADSGoogle Scholar
  13. [13]
    H. Nussbamer and P.J. Storey, Astron. & Astrophys. Supple., 69, 123 (1987).ADSGoogle Scholar
  14. [14]
    R.J. Rudy, R.D. Cohen, G.S. Rossano, P. Erwin, R.C. Puetter, and D.K. Lynch, Astrophys. J., 380, 151 (1991).ADSCrossRefGoogle Scholar
  15. [15]
    A. Burgess, Astrophys. J., 139, 776 (1964b).ADSCrossRefGoogle Scholar
  16. [16]
    A. Burgess and M.J. Seaton, Mon. Not.R. Astr. Soc., 127, 355 (1964).ADSGoogle Scholar
  17. [17]
    A. Burgess and H.P. Summers, Astrophys. J., 157, 1007 (1969).ADSCrossRefGoogle Scholar
  18. [18]
    K.J.H. Phillips and U. Feldman, Astrophys. J., 379, 401 (1991).ADSCrossRefGoogle Scholar
  19. [19]
    D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A.U. Hazi, H. Medecki, B.J. MacGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffman, L.D. Pleasance, G. Rambach, J.H. Scofield, G. Stone and T.A. Weaver, Phys. Rev. Lett., 54, 110 (1985).ADSCrossRefGoogle Scholar
  20. [20]
    B.L. Whitten, A.U. Hazi,M.H. Chen and P.L. Hagelstein, Phys. Rev. A., 33, 2171 (1986).ADSCrossRefGoogle Scholar
  21. [21]
    B.J. MacGowan, S. Maxon, P.L. Hagelstein, C.J. Keane, R.A. London, D.L. Matthews, M.D. Rosen, J.H. Scofield and D.A. Whelan, Phys. Rev. Lett., 59, 2157 (1987).ADSCrossRefGoogle Scholar
  22. [22]
    R.S. Walling, Proc. of the 8th Amer. Phys. Soc. Topical Conf. on Atomic Processes in Plasmas, Portland, Maine, USA - to be published (1991).Google Scholar
  23. [23]
    C.J. Keane, N.M. Ceglio, B.J. MacGowan, D.L. Matthews, D.G. Nilson, J.E. Trebes and D.A. Whelan, J. Phys.B., 22, 3343 (1989).ADSCrossRefGoogle Scholar
  24. [24]
    M.H. Key, Proc. of the 8th Amer. Phys. Soc. Topical Conf. on Atomic Processes in Plasmas, Portland, Maine, USA - to be published (1991).Google Scholar
  25. [25]
    C.J. Keane and S. Suckewer, J. OPt. Soc. Amer., B8, 201 (1991).ADSGoogle Scholar
  26. [26]
    K. Behringer, H.P. Summers, B. Denne, M. Forrest and M. Stamp, Plasma Phys.,& Control. Fusion, 31, 2059 (1989).CrossRefGoogle Scholar
  27. [27]
    H.P Summers, Comm. At. & Mol. Phys., 21, 277 (1988).MathSciNetGoogle Scholar
  28. [28]
    P. Beiersdorfer, S. von Goeler, M. Bitter and K.W. Hill, Nucl. Instr. Meth. B., 33, 347 (1989).ADSCrossRefGoogle Scholar
  29. [29]
    K.D. Zastrow, E. Kallne and H.P. Summers, Phys. Rev. A., 41, 1427 (1990).ADSCrossRefGoogle Scholar
  30. [30]
    R. Bartiroma, F. Bombarda and R. Giannella, Phys. Rev. A., 32, 531 (1985).ADSCrossRefGoogle Scholar
  31. [31]
    N.J. Peacock, in ‘Applied Atomic Collision Physics - Plasmas’ (ed: C.F. Barnett and M.F.A. Harrison - Acad. Press), vol.2, 143 (1984).Google Scholar
  32. [32]
    H.P. Summers, W.J. Dickson, A. Boileau, P.G. Burke, B. Denne-Hinnov, W. Fritsch, R. Giannella, N.C. Hawkes, M. von Hellermann, W. Mandl, N.J. Peacock, R. Reid and M.F. Stanp, Plasma Phys. & Control. Fusion, - in press (1991).Google Scholar
  33. [33]
    R.W.P. McWhirter and H.P. Summers, in ‘Applied Atomic Collision Physics - Plasmas’ (ed: C.F. Barnett and M.F.A. Harrison - Acad. Press), vol.2, 51 (1984).Google Scholar
  34. [34]
    A. Boileau, M. von Hellermann, L.D. Horton, J. Spence and H.P. Summers, Plasma Phys. & Control. Fusion, 31, 779 (1989).CrossRefGoogle Scholar
  35. [35]
    D.R. Bates, A.E. Kingston and R.W.P. McWhirter, Proc. Roy. Soc. A267, 297 (1962).ADSCrossRefGoogle Scholar
  36. [36]
    H.P., Appleton Report IM367 (1974).Google Scholar
  37. [37]
    A. Burgess and H.P. Summers, Mon. Not. R. Astr. Soc., 226, 257 (1987).ADSGoogle Scholar
  38. [38]
    H.P. Summers, Mon. Not. R. Astr. Soc., 178, 101 (1977).ADSGoogle Scholar
  39. [39]
    H.P. Summers and M. Hooper, Plasma Phys. - Contr. Fusion, 25, 1311 (1983).Google Scholar
  40. [40]
    H.P. Summers, K. Behringer and L. Wood, Physica Scripta, 35,303 (1987).ADSCrossRefGoogle Scholar
  41. [41]
    D.R. Bates and A. Damgaard, Phil. Trans. R. Soc. Lond., A242, 101 (1949).ADSMATHCrossRefGoogle Scholar
  42. [42]
    A. Burgess, Astrophys. J., 141, 1588 (1965).ADSCrossRefGoogle Scholar
  43. [43]
    M.J. Seaton, Planet. Space Sci., 12, 55 (1964).ADSCrossRefGoogle Scholar
  44. [44]
    W. Lotz, Astrophys. J. Supple., 14, 207 (1967).ADSCrossRefGoogle Scholar
  45. [45]
    W. Lotz, Z. Phys., 216, 241 (1968).ADSCrossRefGoogle Scholar
  46. [46]
    A. Burgess, Proc. Symp. At. Coll. Processes in PLasmas, Culham, UKAEA Rep. No. AERE-R4818 (1964a).Google Scholar
  47. [47]
    M.J. Seaton, ‘Atomic and Molecular Processes’ (ed: D.R. Bates - Acad. Press) chap. 11 (1962).Google Scholar
  48. [48]
    H. Van Regemorter, Astrophys. J., 136, 906 (1962).ADSCrossRefGoogle Scholar
  49. [49]
    N.R. Badnell and M.S. Pindzola, Phys. Rev. A., 39, 1690 (1989).ADSCrossRefGoogle Scholar
  50. [50]
    H.P. Summers and L. Wood, JET Joint Undertaking Report JET-R(88)06 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • H. P. Summers
    • 1
  • W. J. Dickson
    • 1
  1. 1.JET Joint UndertakingOxonUK

Personalised recommendations