Skip to main content

The Structure of Basin Boundaries in a Simple Adaptive Control System

  • Chapter
Book cover Chaotic Dynamics

Part of the book series: NATO ASI Series ((NSSB,volume 298))

Abstract

We present a detailed study of the boundaries separating different basins of attraction in a discrete-time, model-reference, adaptive control system. The closed-loop system is a noninvertible map of the plane. The noninvertible nature of the map plays an important role in the shape and interactions of these basins, making them distinctly different from those of continuous-time or discrete-time invertible dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Adomaitis and I. G. Kevrekidis. Noninvertibility and the structure of basins of attraction in a model adaptive control system. J. Nonlinear Sci., 1:95–105, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Chenciner. Bifurcation de points fixes elliptiques. ii. Orbites periodiques et ensembles de Cantor invariants. Inventiones mathematicae, 80:81–106, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Franceschini and L. Russo. Stable and unstable manifolds of the Hénon mapping. J. Stat. Phys., 35:757–769, 1981.

    Article  MathSciNet  Google Scholar 

  4. C. E. Frouzakis, R. A. Adomaitis, and I. G. Kevrekidis. Resonance phenomena in adaptivelly controlled systems. Int. J. Bifurcations and Chaos, 1:83–106, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. P. Golden and B. E. Ydstie. Bifurcation in model reference adaptive control systems. Systems & Control Letters, 11:413–430, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. P. Golden and B. E. Ydstie. Parameter drift in adaptive control systems: Bifurcation analysis of a simple case. IEEE Conf. Decision and Control, Dec. 1991, (in press).

    Google Scholar 

  7. G. C. Goodwin, P. J. Ramadge, and P. E. Caines. Discrete-time multivariable adaptive control. IEEE Trans. Autom. Contr., 25:449–456, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction and Control. Prentice-Hall, Englewood Cliffs, NJ, 1984.

    MATH  Google Scholar 

  9. C. Grebogi, E. Ott, and J. A. Yorke. Basin boundary metamorphoses: changes in the accessible boundary orbits. Physica D, 24:243–262, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol 42. Springer-Verlag, 1983 (Third printing).

    Google Scholar 

  11. I. Gumowski and C. Mira. Recurrences and Discrete Dynamic Systems, Lecture Notes in Mathematics, vol 809. Springer-Verlag, 1980.

    Google Scholar 

  12. I. M. Y. Mareels and R. R. Bitmead. Nonlinear dynamics in adaptive control: chaotic and periodic stabilization. Automatica, 22:641–655, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. M. Y. Mareels and R. R. Bitmead. Nonlinear dynamics in adaptive control: chaotic and periodic stabilization-II. Automatica, 24:485–497, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke. Fractal basin boundaries. PhysicaD, 17:125–153, 1985.

    MathSciNet  MATH  Google Scholar 

  15. C. Mira. Chaotic Dynamics. World Scientific Publishing Co. Pte. Ltd., 1987.

    Google Scholar 

  16. R. P. McGehee. Attractors for closed relations on compact Hausdorff spaces. Preprint, University of Minnesota, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frouzakis, C.E., Adomaitis, R.A., Kevrekidis, I.G., Golden, M.P., Ydstie, B.E. (1992). The Structure of Basin Boundaries in a Simple Adaptive Control System. In: Bountis, T. (eds) Chaotic Dynamics. NATO ASI Series, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3464-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3464-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6534-1

  • Online ISBN: 978-1-4615-3464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics