Skip to main content

Complexity and Unpredictable Scaling of Hierarchical Structures

  • Chapter
Chaotic Dynamics

Part of the book series: NATO ASI Series ((NSSB,volume 298))

Abstract

The problem of characterizing complexity is formulated in the framework of a hierarchical modelling of physical systems. Complexity is related to the task of predicting the asymptotic scaling behaviour of system’s observables from the available finite-resolution measurements. The analysis is performed on one-dimensional stationary symbolic patterns such as those encountered in nonlinear dynamics, cellular automata, spin systems, making use of suitable coding methods in a statistical-mechanical environment. The asymptotic limit of thermodynamic sums is estimated within a grand-canonical formalism, with the help of transfer-matrix and renormalization techniques: the convergence of the associated scaling functions is directly related to the previously defined complexity measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Lectures in the Sciences of Complexity”, edited by D.L. Stein, Santa Fe Institute, Addison-Wesley, Reading, Mass. (1989).

    Google Scholar 

  2. D.L. Stein, in1 (preface).

    Google Scholar 

  3. W. Weaver, Am. Sci. 36, 536 (1968).

    Google Scholar 

  4. G.J. Klir, Systems Res. 2, 131 (1985).

    Article  MATH  Google Scholar 

  5. J. von Neumann, “Theory of Self-Reproducing Automata”, edited by A. Burks, University of Illinois Press, Urbana, 111. (1966).

    Google Scholar 

  6. A.N. Kolmogorov, Probl. Inf. Transm. 1, 1 (1965).

    Google Scholar 

  7. R.J. Solomonoff, Inf. Control 7, 1 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Chaitin, J. Assoc. Comp. Math. 13, 547 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  9. L.P. Kadanoff, Physics Today, p. 9, March 1991.

    Google Scholar 

  10. P.W. Anderson, Physics Today, p. 9, July 1991.

    Google Scholar 

  11. P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986) and Wuppertal preprint B 89-26 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. “Webster’s New International Dictionary of the English Language”, Merriam-Webster, Springfield, Mass. (1986); “The Oxford English Dictionary”, Clarendon Press, Oxford (1989).

    Google Scholar 

  13. R. Badii, Europhys. Lett. 13, 599 (1990); Weizmann Inst. Preprint (1988); in “Measures of Complexity and Chaos”, p. 312 edited by N.B. Abraham et al., Plenum Press, New York (1990); R. Badii, M. Finardi and G. Broggi, in “Information Dynamics”, p. 35, edited by H. Atmanspacher et al., Plenum, New York (1991); R. Badii, M. Finardi and G. Broggi, in “Chaos, Order and Patterns”, edited by P. Cvitanović et al., Plenum Press, New York (1991).

    Article  Google Scholar 

  14. L. Löfgren, Int. J. General Systems 3, 197 (1977) and in “Systems and Control Encyclopedia”, M. Singh Ed., Pergamon Press, Oxford (1987).

    Article  MATH  Google Scholar 

  15. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields”, Springer, New York (1986).

    Google Scholar 

  16. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).

    Article  MathSciNet  Google Scholar 

  17. A. Lasota and M.C. Mackey, “Probabilistic Properties of Deterministic Systems”, Cambridge University Press, Cambridge (1985).

    Book  MATH  Google Scholar 

  18. I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, “Ergodic Theory”, Springer, New York (1982).

    Book  MATH  Google Scholar 

  19. A.I. Khinchin, “Information Theory”, Dover, New York (1957).

    MATH  Google Scholar 

  20. P. Grassberger and H. Kantz, Phys. Lett. 113A, 235 (1985).

    MathSciNet  Google Scholar 

  21. P. Grassberger, H. Kantz and U. Moenig, J.Phys. 22A, 5217 (1990).

    MathSciNet  Google Scholar 

  22. L. Flepp, R. Holzner, E. Brun, M. Finardi and R. Badii, Phys. Rev. Lett. (1991).

    Google Scholar 

  23. D.K. Campbell, in1.

    Google Scholar 

  24. A.C. Newell, in1.

    Google Scholar 

  25. I. Procaccia and R. Zeitak, Phys. Rev. Lett. 60, 2511 (1988).

    Article  MathSciNet  Google Scholar 

  26. M.H. Jensen, in “Information Dynamics, edited by H. Atmanspacher et al., p. 103, Plenum, New York (1991).

    Google Scholar 

  27. S. Kakutani, “Selected Papers”, Vol. 2, edited by R.R. Kallman, Birkhäuser, Boston (1986).

    Google Scholar 

  28. A. Papoulis, “Probability, Random Variables and Stochastic Processes”, McGraw-Hill, Singapore (1984).

    MATH  Google Scholar 

  29. K. Petersen, “Ergodic Theory”, Cambridge University Press, Cambridge (1983).

    MATH  Google Scholar 

  30. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces”, edited by T. Bedford, M. Keane and C. Series, Oxford University Press, New York (1991).

    MATH  Google Scholar 

  31. Ya.G. Sinai, Russ. Math. Surv. 27, 21 (1972); R. Bowen, Lecture Notes in Math. 470, Springer, Berlin (1975); D. Ruelle, “Thermodynamic Formalism”, Vol. 5 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Mass. (1978).

    Article  MathSciNet  MATH  Google Scholar 

  32. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B. Shraiman, Phys. Rev. A33, 1141 (1986).

    MathSciNet  Google Scholar 

  33. R. Badii, Riv. Nuovo Cim. 12, No 3, 1 (1989).

    Article  MathSciNet  Google Scholar 

  34. Ya.G. Sinai, “Theory of Phase Transitions: Rigorous Results”, Pergamon Press, Oxford (1982).

    MATH  Google Scholar 

  35. P. Grassberger, R. Badii and A. Politi, J. Stat. Phys. 51, 135 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  36. R.L. Adler, A.G. Konheim and M.H. McAndrew, Trans. Amer. Math. Soc. 114, 309 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Paoli, A. Politi and R. Badii, Physica D 36, 263 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  38. F.J. Dyson, Commun. Math. Phys. 12, 91 (1969); 21, 269 (1971).

    Article  MathSciNet  Google Scholar 

  39. K. Huang, “Statistical Mechanics”, Wiley, New York (1987).

    MATH  Google Scholar 

  40. S.K. Ma, “Modern Theory of Critical Phenomena”, Benjamin, New York (1975).

    Google Scholar 

  41. A.S. Wightman, Introduction to “Convexity in the Theory of Lattice Gases” by R.B. Israel, Princeton University Press, Princeton (1979).

    Google Scholar 

  42. T. Bohr and T. Tél, in “Directions in Chaos”, Hao Bai Lin Ed., World Scientific, Singapore (1988).

    Google Scholar 

  43. (a) J.E. Hopcroft and J.D. Ullman, “Introduction to Automata Theory, Languages and Computation”, Addison-Wesley, Reading, Mass. (1979); (b) G. Rozenberg and A. Salomaa, “The Mathematical Theory of L Systems”, Academic Press, London (1980).

    MATH  Google Scholar 

  44. B. Weiss, Monatshefte für Mathematik 77, 462 (1973).

    Article  MATH  Google Scholar 

  45. R.L. Adler in 30.

    Google Scholar 

  46. M. Keane in30.

    Google Scholar 

  47. M.J. Feigenbaum, J. Stat. Phys 19, 25 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  48. The actual symbolic dynamics of the logistic equation at PD is described by a different transformation which is, however, completely equivalent to the more symmetric one described here (called Morse-Thue substitution and first considered in Ref.49 in connection with PD).

    Google Scholar 

  49. I. Procaccia, S. Thomae and C. Tresser, Phys. Rev. A35, 1884 (1987).

    MathSciNet  Google Scholar 

  50. M.J. Feigenbaum, L.P. Kadanoff and S.J. Shenker, Physica 5D, 370 (1982).

    MathSciNet  Google Scholar 

  51. J.P. Crutchfield and K. Young in “Complexity, Entropy and Physics of Information”, W. Zurek Ed., Addison-Wesley, Reading, Mass. (1989).

    Google Scholar 

  52. J.P. Crutchfield and K. Young, Phys.Rev.Lett. 63, 105 (1989).

    Article  MathSciNet  Google Scholar 

  53. D. Auerbach and I. Procaccia, Phys.Rev. A41, 6602 (1990).

    MathSciNet  Google Scholar 

  54. C.H.Bennett in1.

    Google Scholar 

  55. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    Article  Google Scholar 

  56. M. Droz, Z. Rácz and P. Tartaglia, Phys. Rev. A 41, 6621 (1990).

    Article  Google Scholar 

  57. P. Häner and R. Schilling, Europhys. Lett. 8, 129 (1989).

    Article  Google Scholar 

  58. R. Hamming, “Coding and Information Theory”, Prentice-Hall, Englewood Cliffs, NJ (1986).

    MATH  Google Scholar 

  59. R. Artuso, E. Aurell and P. Cvitanović, Nonlinearity 3 325–359 and 361-386 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  60. M.A. Sepúlveda and R. Badii, in “Measures of Complexity and Chaos”, p. 257, edited by N.B. Abraham et al., Plenum Press, New York (1990); R. Badii, M. Finardi, G. Broggi and M.A. Sepúlveda, “Hierarchical resolution of power spectra”, Physica D, to appear (1992).

    Google Scholar 

  61. Z. Kovacs, this issue.

    Google Scholar 

  62. M. Hénon, Comm.Math.Phys. 50, 69 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  63. M.J. Feigenbaum, M.H. Jensen and I. Procaccia, Phys. Rev. Lett. 57, 1503 (1986).

    Article  MathSciNet  Google Scholar 

  64. R. Badii, “Quantitative characterization of complexity and predictability”, Physics Letters A, to appear (1991).

    Google Scholar 

  65. P.R. Halmos, Trans. Amer. Math. Soc. 55, 1 (1944).

    MathSciNet  MATH  Google Scholar 

  66. A.B. Katok and A.M. Stepin, Soviet Math. Dokl. 6, 1638 (1966) and Russ. Math. Surv. 22, 77 (1967).

    Google Scholar 

  67. S. Lloyd and H. Pagels, Ann. Phys. (N.Y.) 188, 186 (1988).

    Article  MathSciNet  Google Scholar 

  68. D. Hennequin and P. Glorieux, Europhys. Lett. 14, 237 (1991).

    Article  Google Scholar 

  69. M.J. Feigenbaum, J. Stat. Phys. 52, 527 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Szépfalusy, T. Tél and G. Vattay, Phys. Rev. A43, 681 (1991); Z. Kovács and T. Tél, Eötvös preprint, Budapest (1991).

    Google Scholar 

  71. M.H. Jensen, L.P. Kadanoff and I. Procaccia, Phys.Rev. A 36, 1409 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  72. S.R. McKay, A.N. Berker and S. Kirkpatrick, Phys. Rev. Lett. 48, 767 (1982); B. Derrida, J.-P. Eckmann and A. Erzan, J. Phys. A16, 893 (1983).

    Article  MathSciNet  Google Scholar 

  73. N.M. Švrakić, J. Kertész and W. Selke, J. Phys. A15, L427 (1982).

    Google Scholar 

  74. R. Badii and A. Politi “Complexity, Hierarchical Structures and Scaling in Physics”, to be published by Cambridge University Press, Cambridge (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Badii, R. (1992). Complexity and Unpredictable Scaling of Hierarchical Structures. In: Bountis, T. (eds) Chaotic Dynamics. NATO ASI Series, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3464-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3464-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6534-1

  • Online ISBN: 978-1-4615-3464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics