Molecular Characterization of HIV-2 (ROD) Protease Following PCR Cloning from Virus Infected H9 Cells

  • Y.-S. Edmond Cheng
  • Catherine E. Patterson
  • Ronald G. Rucker
  • Michael J. Otto
  • Christopher J. Rizzo
  • Bruce D. Korant
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 312)

Summary

A 450 nucleotide sequence corresponding to the nucleotides 1931-2380 of the viral genome (8) was amplified by polymerase chain reaction (PCR) using template DNA prepared from HIV-2 (ROD) infected H9 cells. The sequence codes for HIV-2 protease and its N-terminal flanking peptide. An identical DNA sequence was obtained from three independent PCR amplifications, which differs from the published sequence of HIV-2 (ROD) in 7 nucleotides scattered throughout the region of the cloned DNA. The cloned DNA was expressed in E. coli cells and resulted in the synthesis of a correctly processed HIV-2 protease, which is enzymatically active. Therefore, none of the seven nucleotide changes, which resulted in two amino acid substitutions, affect the autoproteolytic or trans-cleaving activities of the HIV-2 protease.

Keywords

Phenol Agarose Coomassie Pepstatin Aspartyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kramer, R.A., Schaber, M.D., Skalka, A.M., Ganguly, K., Wong-Staal, F., and Reddy E.P. 1986. HTLV-III gag protein is processed in yeast cells by the virus polprotease. Science 231:1580–84.PubMedCrossRefGoogle Scholar
  2. Kohl, N.E., Emini, E.A., Schleif, W.A., Davis, L.J., Heimbach, J.C., Dixon, R.A.F., Scolnick, E.M., and Sigal, I.S. 1988. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U.S.A. 85:4686–90.PubMedCrossRefGoogle Scholar
  3. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J., and Kent, S.B.H. 1989. Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 245:616–21.PubMedCrossRefGoogle Scholar
  4. Gustchina, A., and Weber, I.T. 1990. Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: The role of the flap. FEBS LETTERS 269:269–72.PubMedCrossRefGoogle Scholar
  5. Le Grice, S.F.J., Roswitha, E., Mills, J., and Mous, J. 1989. Comparison of the human immunodeficiency virus type 1 and 2 proteases by hybrid gene construction and trans-complementation. J. Biol. Chem. 364:14902–8.Google Scholar
  6. Pichuantest, S., Babe, L.M., Barr, P.J., DeCamp, D.L., and Craik, C.S. 1990. Recombinant HIV2 protease processes HIV1 Pr53 gag and analogous junction peptides in vitro. J. Biol. Chem. 265:13890–8.Google Scholar
  7. Tomasselli, A.G., Hui, J.0., Sawyer, T.K., Staples, D.J., Bannow, C., Reardon, I.M., Howe, W.J., DeCamp, D.L., Craik, C.S., and Heinrikson, R.L. 1990. Specificity and inhibition of proteases from human immunodeficiency viruses 1 and 2. J. Biol. Chem. 265:14675–83.PubMedGoogle Scholar
  8. Guyader, M., Emerman, M., Sonigo, P., Clavel, F., Montagnier, L. and Alizon, M. 1987. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326:662–9PubMedCrossRefGoogle Scholar
  9. Cheng, Y.-S.E., McGowan, M.H., Kettner, C.A., Schloss, J.V., Erickson-Viitanen S., and Yin, F.H. 1990. High level synthesis of recombinant HIV-1 protease and the recovery of active enzyme from inclusion bodies. Gene. 87:243–8.PubMedCrossRefGoogle Scholar
  10. Cheng, Y.-S.E., Yin, F.H., Founding, S., Blomstrom, D., and Kettner, C.A. 1990. Stability and activity of human immunodeficiency virus protease: Comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc. Natl. Acad. Sci. U.S.A. 87:9660–4.PubMedCrossRefGoogle Scholar
  11. Rittenhouse, J., Turon, M.C., Helfrich, R.J., Albrecht, K.S., Weigl, D., Simmer, R.L., Mordini, F., Erickson, J., and Kohlbrenner, W.E. 1990. Affinity purification of HIV-1 and HIV-2 proteases from recombinant E. Coli strains using pepstatinagarose. Biochem. Biophys. Acad. Comm. 171:60–6.CrossRefGoogle Scholar
  12. Domingo, E. 1989. RNA virus evolution and the control of viral disease. Prog. Drug Res. 33:93–133.PubMedCrossRefGoogle Scholar
  13. Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan, I.B., Galpin, S.A., Handa, B.K., Kay, J., Krohn, A., Lambert, R.W., Merrett, J.H., Mills, J.S., Parkes, K.E.B., Redshaw, S., Ritchie, A.J., Taylor, D.L., Thomas, G.J., Machin, P.J. 1990. Rational design of peptide-based HIV proteinase inhibitors. Science 248:358–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Y.-S. Edmond Cheng
    • 1
  • Catherine E. Patterson
    • 1
  • Ronald G. Rucker
    • 1
  • Michael J. Otto
    • 1
  • Christopher J. Rizzo
    • 1
  • Bruce D. Korant
    • 1
  1. 1.DuPont Merck Pharmaceutical CompanyWilmingtonUSA

Personalised recommendations