Advertisement

High Molecular Weight Aromatic Biphenylene Polymers by Nickel Coupling of Aryl Dichlorides

  • G. T. Kwiatkowski
  • I. Colon
Part of the Contemporary Topics in Polymer Science book series (CTPS, volume 7)

Abstract

A number of methods are available for the preparation of aromatic polymers. The majority of these methods involve the formation of a chemical bond between a carbon atom and a heteroatom. Typical of these are, for example, aromatic polycarbonates; the latter are prepared by the reaction of a dihydric phenol with phosgene or derivative thereof.1–7 The polymerization proceeds via formation of a carbon-oxygen bond. A similar situation is encountered with the class of polyarylates — the polyesters from dihydric phenols and aromatic diacids.8–11

Keywords

High Polymer Aryl Ether High Molecular Weight Polymer Reduce Viscosity Zinc Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schnell, Angew.Chemie, 68, 633–640 (1956).CrossRefGoogle Scholar
  2. 2.
    H. Schnell, Chemistry and Physics of Polycarbonates, Interscience, New York, 1964.Google Scholar
  3. 3.
    D. W. Fox, in Kirk-Othmer Encyclop. Chem TechnoL, 3rd ed., M. Grayson and D. Eckroth, Eds., Wiley, New York, 1982, Vol. 18, pp. 479–494.Google Scholar
  4. 4.
    J. Ferguson, Macromol Chent (London), 2, 49–68 (1982).CrossRefGoogle Scholar
  5. 5.
    J. Ferguson, Macromol. Chem (London), 3, 76–92 (1984).CrossRefGoogle Scholar
  6. 6.
    D. C Lagett and S. J. Shafer, Polym Eng. ScL, 25(8), 458–461 (1985).CrossRefGoogle Scholar
  7. 7.
    S. K. Sikdar Chemtech 172 112–118 1987Google Scholar
  8. 8.
    A. J. Conix, Ind Chim Beige, 22, 1457 (1957).Google Scholar
  9. 9.
    V. V. Korshak and S. V. Vinogradova, Polyesters, Pergamon, Oxford, 1965.Google Scholar
  10. 10.
    G. Bier, Polymer, 15, 527 (1974).CrossRefGoogle Scholar
  11. 11.
    L. M. Maresca and L. M. Robeson, in Engineering Thermoplastics: Properties and Applications, J. M. Margolis, Ed., Dekker, New York, 1985, p. 255.Google Scholar
  12. 12.
    A. S. Hay, Fortschr. Hochpolym.-Forsch., 4(4), 496–527 (1967).CrossRefGoogle Scholar
  13. 13.
    A. S. Hay, Macromolecules, 2(1), 107–108 (1969).CrossRefGoogle Scholar
  14. 14.
    A S. Hay, P. Shenian, A. C. Gowan, P. F. Erhardt, W. R. Haaf, and J. E. Theberge, in Encyclopedia of Polymer Science and Technology, 1969. Interscience, New York, 1969, Vol. 10, pp. 92–111.Google Scholar
  15. 15.
    A. S. Hay Polym. Eng. ScL 161 1–10 1976CrossRefGoogle Scholar
  16. 16.
    H. L. Finkbeiner, A. S. Hay, and D. M. White, High Polym, 29 (Polym. Processes). 537–581 (1977).Google Scholar
  17. 17.
    A S. Hay, High Perform. Polym, Proc. Symp., R. B. Seymour and G. S. Kirshenbaum, Eds., Elsevier, New York, 1986, pp. 209–213.Google Scholar
  18. 18.
    R. N. Johnson, A G. Famham, R. A. Clendinning, W. F. Hale, and C. N. Merriam, J. Polym. ScL, A-1, 5, 2375 (1967); A G. Farnham and R. N. Johnson, U.S. Pat. No. 4,108,837 (1978), to Union Carbide Corporation.CrossRefGoogle Scholar
  19. 19.
    R. A Clendinning, A G. Farnham, D. C. Priest, and N. L Zutty, Canadian Pat. 847, 963 (1970), to Union Carbide Corporation.Google Scholar
  20. 20.
    R. N. Johnson, in Encyclopedia of Polymer Science and Technology, first ed., Wiley, New York, 1967, Vol 11, pp. 447–463.Google Scholar
  21. 21.
    J. E. Harris, “Polysulfone,” in Engineering Thermoplastics: Properties and Applications, J. M. Margolis, Ed., Dekker, New York, 1985, pp. 177–200.Google Scholar
  22. 22.
    J. B. Rose, in High Performance Polymers: Their Origin and Development, R. B. Seymour and G. S. Kirshenbaum, Eds., Elsevier, New York, 1986, pp. 169–185.CrossRefGoogle Scholar
  23. 23.
    P. Kovacic and A Kyriakis, J. Am. Chem Soc, 85, 454 (1963).CrossRefGoogle Scholar
  24. 24.
    P. Kovacic and R. M. Lange, J. Org. Chem, 28, 968 (1963).CrossRefGoogle Scholar
  25. 25.
    P. Kovacic and F. W. Koch, J. Org. Chem, 28, 1864 (1963).CrossRefGoogle Scholar
  26. 26.
    P. Kovacic and J. Oziomek, J. Org. Chem, 29, 100 (1964).CrossRefGoogle Scholar
  27. 27.
    P. Kovacic, F. W. Koch, and C. E. Stephan, J. Polym ScL, 2A, 1193 (1964).Google Scholar
  28. 28.
    P. Kovacic and I. Hsu, J. Polym Sci A-1, 4, 5 (1966).Google Scholar
  29. 29.
    P. Kovacic and F. W. Koch, in Encyclopedia of Polymer Science and Technology, first ed., Wiley, New York, 1969, Vol. 11, pp. 380–389.Google Scholar
  30. 30.
    J. G. Speight, P. Kovacic, and F. W. Koch, J. Macromol. ScL Rev. Macromol. Chem., 5(2), 295–386 (1971).CrossRefGoogle Scholar
  31. 31.
    P. Kovacic and M. B. Jones, Chem Rev., 87(2), 357–379 (1987).CrossRefGoogle Scholar
  32. 32.
    W. Kern and R. Gehm, Angew. Chem, 62, 337 (1950).Google Scholar
  33. 33.
    W. R. Krigbaum and K. J. Krause, J. Polym ScL, 16, 3151–3156 (1978).Google Scholar
  34. 34.
    T. Yamamoto and A Yamamoto, Chem. Lett., 353–356 (1977).Google Scholar
  35. 35.
    T. Yamamoto and Y. Hayashi, and A. Yamamoto, Bull Chem Soc. Jpn., 51(7), 2091 (1978).CrossRefGoogle Scholar
  36. 36.
    J. F Fauvarque, A Digua, M. A Petit, and J. Savard, Macromol Chem, 186, 2415–2425 (1985).CrossRefGoogle Scholar
  37. 37.
    V. Percec and H. Nava, J. Polym. ScL, Part A: Polymer Chemistry, 26, 783–805 (1988).CrossRefGoogle Scholar
  38. 38.
    I. Colon and D. R. Kelsey, J. Org. Chem., 51, 2627 (1986); I. Colon, L. M. Maresca, and G. T. Kwiatkowski, U.S. Pat. 4,263,466 (1981), to Union Carbide Corporation.CrossRefGoogle Scholar
  39. 39.
    I. Colon, U.S. Patent 4, 400, 499 (1983), to Union Carbide Corporation.Google Scholar
  40. 40.
    I. Colon and G. T. Kwiatkowski, J. Polym. ScL Part A: Polymer Chemistry, 28, 367–383 (1990). 41 J. E. Harris and G. T. Brooks, European Patent Application 376,349 (1990); to Amoco Corporation.CrossRefGoogle Scholar
  41. 42.
    J. E. Harris and L. M. Robeson, U.S. Patent 4,713,426 (1987); to Amoco Corporation.Google Scholar
  42. 43.
    A G. Farnham and R. N. Johnson, U.S. Patent 3,332,909 (1967); to Union Carbide Corporation.Google Scholar
  43. 44.
    J. E. Harris, L. M. Maresca and M. Matzner, U.S. Patent 4,785,072 (1988); to Amoco Corporation.Google Scholar
  44. 45.
    D. A. Barr and J. B. Rose, U.S. Patent 3,634,355 (1972); to ICI, Ltd.Google Scholar
  45. 46.
    G. Darsow, U.S. Patent 3,647,751 (1972); to Farbenfabricken Bayer, A. G.Google Scholar
  46. 47.
    J. E. Harris and M. J. Michno, Jr., U.S. Patent 4,755,556 (1988); to Amoco Corporation.Google Scholar
  47. 48.
    P. A. Staniland, Bull Soc. Chim. Belg., 98, 667–676 (1989).CrossRefGoogle Scholar
  48. 49.
    P. A. Staniland, U.S. Patent 4,960,851 (1990); to ICI PLC.Google Scholar
  49. 50.
    European Patent Application, 348, 717 (1990); to Bayer, A. G.Google Scholar
  50. 51.
    M. Ueda and F. Ichikawa, Macromolecules, 23, 926–930 (1990).CrossRefGoogle Scholar
  51. 52.
    H. M. Colquhoun, C. C. Dudman, M. Thomas, C. A. O’ Mahoney and D. J. Williams, J. Chem. Soc, Chem. Commun., No. 4, 336–339 (1990); See also: European Patent Application 317,226 (1989); to ICI, PLC.CrossRefGoogle Scholar
  52. 53.
    I. Colon, J. Org. Chem., 47, 2622 (1982); I. Colon, U. S. Patent 4,400,566 (1982); to Union Carbide Corporation.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • G. T. Kwiatkowski
    • 1
    • 2
  • I. Colon
    • 1
    • 2
  1. 1.Amoco Performance Products, Inc.AlpharettaUSA
  2. 2.Union Carbide CorporationBound BrookUSA

Personalised recommendations