Advertisement

Approaches to Orthogonally Fused Conducting Polymers For Molecular Electronics

  • James M. Tour
  • Ruilian Wu
  • Jeffry S. Schumm
Part of the Contemporary Topics in Polymer Science book series (CTPS, volume 7)

Abstract

Molecular electronics-based computing instruments possess tremendous technological potential. There is the hope of developing single molecules that could each function as a self-contained electronic device. Thus, one can envision computing systems with molecular-sized electronic elements and operational efficiencies far exceeding that of present systems.3 Recently, Aviram of the IBM Corporation has suggested that molecules which contain a pro-conducting (non-doped or non-oxidized system, hence insulating) polymer which is fixed at a 90° angle via a non-conjugated sigma bonded network to a conducting (doped or oxidized system) should exhibit properties which would make it suitable for interconnection into future molecular electronic devices.4 These devices may be useful for the memory, logic, and amplification computing systems. The molecule 1 (in doped form) is an example of this pro-conducting/sigma/conducting type of molecule.

Keywords

Poly Thiophene Grignard Reagent High Resolution Mass Spectrometry Thiophene Unit Molecular Electronic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    a. Tour, J. M.; Wu, R.; Schumm, J. S. J. Am. Chem. Soc. 1990, 112, 5662. b. Tour, J. M.; Wu, R.; Schumm, J. S. Polym. Preprints 1990, 31, 408.CrossRefGoogle Scholar
  2. 2.
    Recipient of the Office of Naval Research, Young Investigator Award (1989-92).Google Scholar
  3. 3.
    a. Bowden, M. J. in Electronic and Photonic Applications of Polymers; Bowden, M. J.; Turner, S. R., Eds; (Advances in Chemistry, 218) American Chemical Society: Washington DC, 1988. b. Molecular Electronic Devices; Carter, F. L., Ed.; Marcel Dekker: New York, 1982. c. Molecular Electronic Devices II; Carter, F. L., Ed.; Marcel Dekker: New York, 1984. d. Third International Symposium on Molecular Electronic Devices, Washington DC, October, 1986; Roland Etvos Physical Society, Satellite Symposium on Molecular Electronics, Budapest Hungary, August 1987. e. Krummel, G.; Huber, W.; Mullen, K. Angew. Chem. Int. Ed. Engl 1987, 26, 129CrossRefGoogle Scholar
  4. 4.
    Aviram, A. J. Am. Chem. Soc. 1988, 110, 5687 and references therein.CrossRefGoogle Scholar
  5. 5.
    a. Padias, A. B.; Hall, H. K., Jr.; Tomalia, D. A.; McConnell, J. R. J. Org. Chem. 1987, 52, 5305. b. Fujihara, H.; Imaoka, K.; Furukawa, N. J. Chem. Soc. Perkin Trans. I 1986, 465.CrossRefGoogle Scholar
  6. 6.
    All new compounds were fully characterized spectroscopically and the elemental composition was established by high resolution mass spectrometry and/or combustion analysis. All reported yields pertain to isolated homogeneous materials which were purified by recrystallization or chromotography.Google Scholar
  7. 7.
    a. Negishi, E. Holmes, S. J.; Tour, J. M.; Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc. 1989, 111, 3336. b. Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310.CrossRefGoogle Scholar
  8. 8.
    a. Chan, T. H.; Fleming, I. Synthesis, 1979, 761. b. Utimoto, K.; Kitai, M.; Nozaki, H. Tetrahedron Lett. 1975, 33, 2825.Google Scholar
  9. 9.
    For a discussion of polyphenylene, see: a. Elsenbaumer, R. L.; Shacklette, L. W.in Handbook of Conducting Polymers, Skotheim, T. A., Ed.; Dekker: New York, 1986. For related syntheses, see b. Yamamoto, T.; Hayashi, Y.; Tamamoto, A. Bull. Chem. Soc. Jpn. 1978, 51, 2091. c. Kovacic, P.; Oziomek, J. J. Org. Chem. 1964, 29, 100.Google Scholar
  10. 10.
    Heaney, H.; Millar, I. T. Org. Synth. 1960, 40, 105.Google Scholar
  11. 11.
    Clarkson, R. G.; Gomberg, M. Am. Chem. Soc. 1930, 52, 2881.CrossRefGoogle Scholar
  12. 12.
    a. Negishi, E.; Baba, S. J. Chem. Soc. Chem. Commun. 1976, 596. b. Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393. c. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986,25, 508. d. Stille, J. K. Pure Appl. Chem. 1985, 57, 1771.Google Scholar
  13. 13.
    For a discussion of polythiophene and its derivatives, see: Tourillon, G. in ref. 9a.Google Scholar
  14. 14.
    For a discussion of mixed thiophene/phenylene semiconductors, see, for example: Pelter, A.; Maud, J. M.; Jenkins, I.; Sadeka, C; Coles, G. Tetrahedron Lett. 1989, 30, 3461.CrossRefGoogle Scholar
  15. 15.
    Uhlenbroek, J. H.; Bijloo, J. D. Rev. Trav. Chim. 1960, 79, 1181.CrossRefGoogle Scholar
  16. 16.
    Tamao, K.; Kodama, S.; Nakajima, I.; Kumada, M.; Minato, A.; Suzuki, K. Tetrahedron 1982, 38, 3347.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • James M. Tour
    • 1
  • Ruilian Wu
    • 1
  • Jeffry S. Schumm
    • 1
  1. 1.Department of ChemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations