Advertisement

Airway Neuropeptides

  • Peter J. Barnes
Part of the NATO ASI Series book series (NSSA, volume 229)

Abstract

Many neuropeptides are localized to sensory, parasympathetic, and sympathetic neurons in the airways1-3. These peptides have potent effects on bronchomotor tone, airway secretions, the bronchial circulation and on inflammatory and immune cells. The precise physiological roles of each peptide is still not known, but some clues are provided by their localization and functional effects. This chapter reviews what is known of these peptides, particularly in the human respiratory tract, and discusses their possible pathophysiological role in asthma.

Keywords

Vasoactive Intestinal Peptide Airway Smooth Muscle Human Airway Neurogenic Inflammation Nedocromil Sodium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Uddman and F. Sundler, Neuropeptides in the airways: A review, Am. Rev. Respir. Dis. 136:S3–S8 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    P.J. Barnes, Neuropeptides in the lung: localization, function and pathophysiological implications, J. Allergy Clin. Immunol. 79:285–295 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    P.J. Barnes, J. Baraniuk, and M.G. Belvisi, Neuropeptides in the respiratory tract, Am. Rev. Respir. Dis. in press (1991).Google Scholar
  4. 4.
    J.M. Lundberg, J. Fahrenkrug, T. Hokfelt, C.R. Matling, O. Larsson, K. Tatemoto, and A. Anggard, Coexistence of peptide histidine isoleucine (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man, Peptides 5:593–606 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Laitinen, M. Partanen, A. Hervonen, M. Peto-Juikko, and L.A. Laitinen, VIP-like immunoreactive nerves in human respiratory tract.Light and electron microscopic study, Histochemistry 82:313–319 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    J.R. Carstairs and P.J. Barnes, Visualization of vasoactive intestinal peptide receptors in human and guinea pig lung, J Pharmacol Exp Ther 239:249–255 (1986).PubMedGoogle Scholar
  7. 7.
    J.B.D. Palmer, F.M.C. Cuss, and P.J. Barnes, VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways, J. Appl. Physiol. 61:1322–1328 (1986).PubMedGoogle Scholar
  8. 8.
    L. Diamond, J.L. Szarek, N.N. Gillespie, and R.J. Altiere, In vivo bronchodilatory activity of vasoactive intestinal peptide in the cat, Am Rev Respir Dis 128:827–832 (1983).PubMedGoogle Scholar
  9. 9.
    P.J. Barnes and C.H.S. Dixon, The effect of inhaled vasoactive intestinal peptide on bronchial reactivity to histamine in man, Am Rev Respir Dis 130:162–166 (1984).PubMedGoogle Scholar
  10. 10.
    J.B.D. Palmer, F.M.C. Cuss, J.B. Warren, and P.J. Barnes, The effect of infused vasoactive intestinal peptide on airway function in normal subjects, Thorax 41:663–666 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Rorice, R.J. Unwin, and P.S. Sever, Vasoactive intestinal peptide causes bronchodilation and protects against histamine-induced bronchoconstriction in asthmatic subjects, Lancet 2:1225–1226 (1983).Google Scholar
  12. 12.
    A.C. Peatfield, P.J. Barnes, C. Bratcher, J.A. Nadel, and B. Davis, Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret, Am. Rev. Respir. Dis. 128:89–93 (1983).PubMedGoogle Scholar
  13. 13.
    S.J. Coles, S.I. Said, and L.M. Reid, Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro, Am. Rev. Respir. Dis. 124:531–536 (1981).PubMedGoogle Scholar
  14. 14.
    S.E. Webber, Non adrenergic noncholinergic control of mucus secretion in airways, Arch. Int. Pharmacodyn. 303:100–112 (1990).Google Scholar
  15. 15.
    I. Nathanson, J.H. Widdicombe, and P.J. Barnes, Effect of vasoactive intestinal peptide on ion transport across dog tracheal epithelium, J Appl Physiol 55:1844–1848 (1983).PubMedGoogle Scholar
  16. 16.
    J.G. Widdicombe, The NANC system and airway vasculature, Arch. Int. Pharmacodyn. 303:83–90 (1990).PubMedGoogle Scholar
  17. 17.
    R. Matran, K. Alving, C.R. Martling, J.S. Lacroix, and J.M. Lundberg, Effects of neuropeptides and capsaicin on tracheobronchial blood flow in the pig, Acta Physiol Scand 135:335–342 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    P.J. Barnes and C.M.S. Dixon, The effect of inhaled vasoactive intestinal peptide on bronchial hyperreactivity in man, Am. Rev. Respir. Dis. 130:162–166 (1984).PubMedGoogle Scholar
  19. 19.
    J.G. Martin, A. Wang, M. Zacour, and D.F. Biggs, The effects of vasoactive intestinal polypeptide on cholinergic neurotransmission in isolated innervated guinea pig tracheal preparations, Respir. Physiol. 79:111–122 (1990).Google Scholar
  20. 20.
    C.D. Stretton, M.G. Belvisi, and P.J. Barnes, Modulation of neural bronchoconstrictor responses in the guinea pig respiratory tract by vasoactive intestinal peptide, Neuropeptides 18:37–44 (1991).CrossRefGoogle Scholar
  21. 21.
    B.J. Undem, E.C. Dick, and C.K. Buckner, Inhibition by vasoactive intestinal peptide of antigen-induced histamine release from guinea pig minced lung, Eur J Pharmacol 88:247–250 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    M.S. O’Dorisio, B.T. Shannaon, D.J. Fleshman, and L.B. Campolito, Identification of high affinity receptors for vasoactive intestinal peptide on human lymphocytes of B cell lineage, J Immunol 142:3533–3536 (1989).Google Scholar
  23. 23.
    S. O11erenshaw, D. Jarvis, A. Woolcock, C. Sullivan, and T. Scheibner, Absence of immunoreactive vasoactive intestinal polypeptide in tissue from the lungs of patients with asthma, N. Engl. J. Med. 320:1244–1248 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    P.J. Barnes, Vasoactive intestinal peptide and asthma, New Engl J Med 321:1128–1129 (1989).CrossRefGoogle Scholar
  25. 25.
    P.H. Howarth, K.M. Britten, R.J. Djukanovic, J.W. Wilson, S.T. Holgate, D.R. Springall, and J.H. Polak, Neuropeptide containing nerves in human airways in vivo: a comparative study of atopic asthma, atopic non-asthma and non-atopic non-asthma (abstract), Thorax 45:786–787 (1990).Google Scholar
  26. 26.
    S. Paul, S.I. Said, A.B. Thompson, D.J. Volle, D.K Arawal, H. Foda, and S. de la Rocha, Characterization of autoantibodies to vasoactive intestinal peptide in asthma, J. Neuroimmunol. 23:133–42 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    G.H. Caughey, F. Leidig, N.F. Viro, and J.A. Nadel, Substance P and vasoactive intestinal peptide degradation by mast cell tryptase and chymase, J Pharmacol Ertl Ther 244:133–137 (1988).Google Scholar
  28. 28.
    J.-W.J. Lammers, P. Minette, M. McCusker, K.F. Chung, and P.J. Barnes, Capsaicin-induced bronchodilatation in mild asthmatic subjects: possible role of nonadrenergic inhibitory system, J. Appl. Physiol. 67:856–861 (1989).PubMedGoogle Scholar
  29. 29.
    M. Miura, H. Noue, M. Ichinose, K. Kimura, U. KATSUMATA, and T. Takishima, Effect of nonadrenergic, noncholinergic inhibitory nerve stimulation on the allergic reaction in cat airways, Am. Rev. Respir. Dis. 141:29–32 (1990).PubMedGoogle Scholar
  30. 30.
    Y. Yiangou, V. DiNarzo, R.A. Spokes, M. Panico, H.R. Morris, and S.R. Bloom, Isolation, characterization, and pharmacological actions of peptide histidine valine 42, a novel prepro-vasoactive intestinal peptide derived peptide, J Biol Chem 262:14010–14013 (1987).PubMedGoogle Scholar
  31. 31.
    E.R. Chilvers, C.N.S. Dixon, Y. Yiangou, S.R. Bloom, and P.W. Ind, Effect of peptide histidine valine on cardiovascular and respiratory funtion in normal subjects, Thorax 43:750–755 (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    H.D. Foda, J. Higuchi, and S.I. Said, Helodermin, a VIP-like peptide, is a potent long-acting pulmonary vasodilator, Am Rev Respir Dis 141:A486 (1990).Google Scholar
  33. 33.
    A. Luts, R. Uddman, A. Arimura, and F. Sundler, PACAP, a new VIP-like peptide in the respiratory tract, Cell Tissue Res in press:(1991).Google Scholar
  34. 34.
    Y. Takeda, J. Takeda, B.N. Smart, and J.E. Krause, Regional distribution of neuropeptide gamma and other tachykinin peptides derived from the substance P gene in the rat, Regulatory Peptides 28:323–333 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    J.M. Lundberg, T. Hokfelt, C.R. Martling, A. Saria, and C. Cuello, Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man, Cell Tissue Res 235:251–261 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    J.N. Lundberg, A. Saria, L. Lundblad, A. Angaard, C-R. Martling, E. Theodorsson-Norheim, P. Stjarne, and T. Hokfelt, Bioactive peptides in capsaicin-sensitiive C-fiber afferents of the airways: functional and pathophysiological implications, Marcel Decker, New York, (1987).Google Scholar
  37. 37.
    A. Saria, C.R. Martling, Z. Yan, E. Theodorsson-Norheim, R. Gamse, and J.M. Lundberg, Release of multiple tachykinins from capsaicin-sensitive nerves in the lung by bradykinin, histamine, dimethylphenylpiperainium, and vagal nerve stimulation, Am Rev Respir Dis 137:1330–1335 (1988).PubMedGoogle Scholar
  38. 38.
    D.R. Springall, J.M. Polak, L. Howard, R.F. Power, T. Krausz, S. Manickan, N.R. Banner, A. Khagani, N. Rose, and M.H. Yacoub, Persistence of intrinsic neruones and possible phenotypic changes after extrinsic denervation of human respiratory tract by heart-lung transplantation, Am Rev Respir Dis 141:1538–1546 (1990).PubMedGoogle Scholar
  39. 39.
    C.R. Hartling, E. Theodorsson-Norheim, and J.M. Lundberg, Occurrence and effects of multiple tachykinins: substance P, neurokinin A, and neuropeptide K in human lower airways, Life Sci 40:1633–1643 (1987).CrossRefGoogle Scholar
  40. 40.
    D. Regoli, Pharmacological receptors for substance P and neurokinins, Life Sci 403:66 (1987).Google Scholar
  41. 41.
    R. Shigemoto, Y. Yokota, K. Tsuchida, and S. Nakanishi, Cloning and expression of a rat neuromedin K receptor cDNA, J. Biol. Chem. 265:623–628 (1990).PubMedGoogle Scholar
  42. 42.
    C.A. Maggi, R. Patacchinin, S. Guiliani, P. Rovero, S. Dion, D. Regoli, A. Giachetti, and A. Meli, Competetive antagonists discriminate between NK2 tachykinin receptor subtypes, Br J Pharmacol 100:588–592 (1990).CrossRefGoogle Scholar
  43. 43.
    J.R. Carstairs and P.J. Barnes, Autoradiographic mapping of substance P receptors in lung, Eur J Pharmacol 127:295–296 (1986).CrossRefGoogle Scholar
  44. 44.
    R.A. Skidgel, A. Engelbrecht, A.R. Johnson, and E.G. Erdos, Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase, Peptides 5:767–776 (1989).Google Scholar
  45. 45.
    M.A. Martins, S.A. Shore, N.P. Gerard, C. Gerald, and J.H Drazen, Peptidase modulation of the pulmonary effects of tachykinins in tracheal superfused guinea pig lungs, J Clin Invest 85:170–176 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    J.O. Lötvall, B-E. Skoogh, P.J. Barnes, and K.F. Chung, Effects of aerosolized substance P on lung resistance in guinea pigs: a comparison between inhibition of neutral endopeptidase and angiotensin-converting enzyme, Br J Pharmacol 100:69–72 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    J.L Black, P.R.A. Johnson, and C.L. Armour, Potentiation of the contractile effects of neuropeptides in human bronchus by an enkephalinase inhibitor, Pull Pharmacol 1:21–23 (1988).CrossRefGoogle Scholar
  48. 48.
    D.B. Borson, R. Corrales, S. Varsano, M. Gold, N. Viro, G. Caughey, J. Ramachandran, and J.A. Nadel, Enkephalinase inhibitors potentiate substance P-induced secretion of 35S-macromoleules from ferret trachea, Exp Lung Res 12:21–36 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    D.F. Rogers, B. Aursudkij, and P.J. Barnes, Effects of tachykinins on mucus secretion on human bronchi in vitro, Eur J Pharmacol 174:283–286 (1989).PubMedCrossRefGoogle Scholar
  50. 50.
    N. Frossard, K.J. Rhoden, and P.J. Barnes, Influence of epithelium on guinea pig airway responses to tachykinins: role of endopeptidase and cyclooxygenase, J Pharmacol Exp Ther 248:292–298 (1989).PubMedGoogle Scholar
  51. 51.
    H-SH. Choi, M. Lesser, C. Cardozo, and M. Orlowski, Immunohistochemical localization of endopeptidase 24.15 in rat trachea, lung tissue and alveolar macrophages, Am J Resp Cell Moi Biol 3:619–624 (1990).Google Scholar
  52. 52.
    K.J. Rhoden and P.J. Barnes, Classification of tachykinin receptors on guinea pig and human airway smooth muscle, Am Rev Respir Dis 141:A726 (1990).Google Scholar
  53. 53.
    N. Frossard and P.J. Barnes, Effects of tachykinins on small human airways, Neuropeptides in press (1991).Google Scholar
  54. 54.
    R.W. Fuller, D.L. Maxwell, C.M.S. Dixon, G.P. McGregor, V.F. Barnes, S.R. Bloom, and P.J. Barnes, The effects of substance P on cardiovascular and respiratory function in human subjects, J Appl Physiol 62:1473–1479 (1987).PubMedGoogle Scholar
  55. 55.
    T.W. Evans, C.M. Dixon, B. Clarke, T.B. Conradson, and P.J. Barnes, Comparison of neurokinin A and substance P on cardiovascular and airway function in man, Br J Pharmacol 25:273–275 (1988).CrossRefGoogle Scholar
  56. 56.
    G. Joos, R. Pauwels, and M.E. van der Straeten, Effect of inhaled substance P and neurokinin A in the airways of normal and asthmatic subjects, Thorax 42:779–783 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    G.F. Joos, R.A. Pauwels, and M.E. van der Straeten, The effect of nedocromil sodium on the bronchoconstrictor effect of neurokinin A in subjects with asthma, J. Allergy Clin. Immunol. 83:663–668 (1989).PubMedCrossRefGoogle Scholar
  58. 58.
    B.M. Grandordy, N. Frossard, K.J. Rhoden, and P.J. Barnes, Tachykinin-induced phosphoinositide breakdown in airway smooth muscle and epithelium: relationship to contraction, Mol Pharmacol 33:515–519 (1988).PubMedGoogle Scholar
  59. 59.
    S.J. Coles, K.H. Neill, and L.N. Reid, Potent stimulation of glycoprotein secretion in canine trachea by substance P, J. Appl. Physiol. 57:1323–1327 (1984).PubMedGoogle Scholar
  60. 60.
    S. Shimura, T. Sasaki, H. Okayama, H. Sasaki, and T. Takishima, Effect of substance P on mucus secretion of isolated submucosal glands from feline trachea, J Appl Physiol 63:646–653 (1987).PubMedGoogle Scholar
  61. 61.
    K. Tokuyama, H-P. Kuo, J.A.L. Rohde, P.J. Barnes, and D.F. Rogers, Neural control of goblet cell secretion in guinea pig airways, Am J Physiol 259:L108–L115 (1990).PubMedGoogle Scholar
  62. 62.
    H-P. Kuo, J.A.L. Rhode, K. Tokuyama, P.J. Barnes, and D.F. Rogers, Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea pig trachea, J Physiol 431:629–641 (1990).PubMedGoogle Scholar
  63. 63.
    H-P. Kuo, J.A.L. Rohde, P.J. Barnes, and D.F. Rogers, Cigarette smoke induced goblet cell secretion: neural involvement in guinea pig trachea, Eur. Respir. J. 3:1895 (1990).Google Scholar
  64. 64.
    P.K. Rangachari and D. McWade, Effects of tachykinins on the electrical activity of isolated canine tracheal epithelium: an exploratory study, Regulatory Peptides 12:9–19 (1985).PubMedCrossRefGoogle Scholar
  65. 65.
    L.B. Wong, L.F. Miller, and D.B. Yeates, Stimulation of tracheal ciliary beat frequency by capsaicin, J Appl Physiol 68:2574–2580 (1990).PubMedGoogle Scholar
  66. 66.
    D.F. Rogers, M.G. Belvisi, B. Aursudkij, T.W. Evans, and P.J. Barnes, Effects and interactions of sensory neuropeptides on airway microvascular leakage in guinea pigs, Br J Pharmacol 95:1109–1116 (1988).PubMedCrossRefGoogle Scholar
  67. 67.
    J.O. Lötvall, R.J. Lemen, K.P. Hui, P.J. Barnes, and K.F. Chung, Airflow obstruction after substance P aerosol: contribution of airway and pulmonary edema, J Appl Physiol 69:1473–1478 (1990).PubMedGoogle Scholar
  68. 68.
    D.G. McCormack, R.O. Salonen, and P.J. Barnes, Effect of sensory neuropeptides on canine bronchial and pulmonary vessels in vitro, Life Sci 45:2405–2412 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    N.A. Lowman, R.C. Benyon, and M.K. Church, Characterization of neuropeptide-induced histamine release from human dispersed skin mast cells, Br J Pharmacol 95:121–130 (1988).PubMedCrossRefGoogle Scholar
  70. 70.
    H. Ali, K.B.I. Leung, F.L. Pearce, N.A. Hayes, and J.C. Foremean, Comparison of histamine releasing activity of substance P on mast cells and basophils from different species and tissues, Int Arch Allergy 79:121–124 (1986).CrossRefGoogle Scholar
  71. 71.
    C. Kroegel, M.A. Giembycz, and P.J. Barnes, Characterization of eosinophil activation by peptides. Differential effects of substance P, mellitin, and f-met-leu-phe, J Immunol 145:2581–2587 (1990).PubMedGoogle Scholar
  72. 72.
    S. Brunelleschi, L. Vanni, F. Ledda, A. Giotti, C.A. Maggi, and R. Fantozzi, Tachykinins activate guinea pig alveolar macrophages: involvement of NK2 and NK1 receptors, Br J Pharmacol 100:417–420 (1990).PubMedCrossRefGoogle Scholar
  73. 73.
    M. Lotz, J.H. Vaughn, and D.M. Carson, Effect of neuropeptides on production of inflammatory cytokines by human monocytes, Science 241:1218–1221 (1988).PubMedCrossRefGoogle Scholar
  74. 74.
    E. Umeno, J.A. Nadel, H.T. Huang, and D.H. McDonald, Inhibition of neutral endopeptidase potentiates neurogenic inflammation in the rat trachea, J Appl Physiol 66:2647–2652 (1989).PubMedGoogle Scholar
  75. 75.
    K. Sekizawa, J. Tamaoki, J.A. Nadel, and D.B. Borson, Enkephalinase inhibitor potentiates substance P and electrically induced contraction in ferret trachea, J Appl Physiol 63:1401–1405 (1987).PubMedGoogle Scholar
  76. 76.
    A.K. Hall, P.J. Barnes, L.A. Meldrum, and J. Maclagan, Facilitation of tachykinins of neurotransmission in guinea-pig pulmonary parasympathetic nerves, Br. J. Pharmacol. 97:274–280 (1989).PubMedCrossRefGoogle Scholar
  77. 77.
    C. Martling, A. Saria, P. Andersson, and J.M. Lundberg, Capsaicin pretreatment inhibits vagal cholinergic and noncholinergic control of pulmonary mechanisms in guinea pig, Naunyn Schmiedeberg Arch Pharm 325:343–348 (1984).CrossRefGoogle Scholar
  78. 78.
    C.D. Stretton, M.G. Belvisi, and P.J. Barnes, The effect of sensory nerve depletion on cholinergic neurotransmission in guinea pig airways, Br J Pharmacol 98:782P (1989).Google Scholar
  79. 79.
    C.D. Stratton, M.G. Belvisi, and P.J. Barnes, Sensory nerve depletion potentiates inhibitory NANC nerves in guinea pig airways, Eur J Pharmacol 184:333–337 (1990).CrossRefGoogle Scholar
  80. 80.
    B.J. Undem, A.C. Myers, H. Barthlow, and D. Weinreich, Vagal innervation of guinea pig bronchial smooth muscle, J Appl Physiol 69:1336–1346 (1991).Google Scholar
  81. 81.
    J.L. Black, P.R. Johnson, L. Alouvan, and C.L. Armour, Neurokinin A with K+ channel blockade potentiates contraction to electrical stimulation in human bronchus, Eur J Pharmacol 180:311–317 (1990).PubMedCrossRefGoogle Scholar
  82. 82.
    K. Noguchi, E. Senba, Y. Morita, M. Sato, and M. Tohyama, Coexistence of a-CGRP and B-CGRP mRNAs in rat dorsal root ganglion cells, Neurosci. Lett. 108:1–5 (1990).PubMedCrossRefGoogle Scholar
  83. 83.
    C.R. Martling, Sensory nerves containing tachykinins and CGRP in the lower airways: functional implications for bronchoconstriction, vasodilation, and protein extavasation, Acta Physiol Scand Suppl 563:1–57 (1987).Google Scholar
  84. 84.
    J.B.D. Palmer, F.M.C. Cuss, P.K. Mulderry, M.A. Ghatei, D.R. Springall, A. Cadieux, S.R. Bloom, J.M. Polak, and P.J. Barnes, Calcitonin gene-related peptide is localized to human airway nerves and potently constricts human airway smooth muscle, Br J pharmacol 91:95–101 (1987).PubMedCrossRefGoogle Scholar
  85. 85.
    J.C.M. Mak and P.J. Barnes, Autoradiographic localization of calcitonin gene-related peptide binding sites in human and guinea pig lung, Peptides 9:957–964 (1988).PubMedCrossRefGoogle Scholar
  86. 86.
    T. Dennis, A. Fournier, S. St.Pierre, and R. Quirion, Structure activity profile of calcitonin gene-related peptide in peripheral and brain tissues. Evidence for receptor multiplicity, J Pharm Exp Ther 251:718–725 (1989).Google Scholar
  87. 87.
    D.G. McCormack, J.C. Mak, M.O. Coupe, and P.J. Barnes, Calcitonin gene-related peptide vasodilation of human pulmonary vessels: receptor mapping and functional studies, J Appl Physiol 67:1265–1270 (1989).PubMedGoogle Scholar
  88. 88.
    R.O. Salonen, S.E. Webber, and J.G. Widdicombe, Effects of neuropeptides and capsaicin on the canine tracheal vasculature in vivo, Br J Pharmacol 95:1262–1270 (1988).PubMedCrossRefGoogle Scholar
  89. 89.
    C.R. Martling, A. Saria, J.A. Fischer, T. Hokfelt, and J.H. Lundberg, Calcitonin gene related peptide and the lung: neuronal coexistence and vasodilatory effect, Regulatory Peptides 20:125–139 (1988).PubMedCrossRefGoogle Scholar
  90. 90.
    S.G. Webber, J.C.S. Lim, and J.G. Widdicombe, The effects of calcitonin gene related peptide on submucosal gland secretion and epithilial albumin transport on ferret trachea in vitro, Br J Pharmacol 102:79–84 (1991).PubMedCrossRefGoogle Scholar
  91. 91.
    C.A. Maggi and A. Heli, The sensory efferent function of capsaicin sensitive sensory nerves, Gen Pharmacol 19:1–43 (1988).PubMedCrossRefGoogle Scholar
  92. 92.
    P.J. Barnes, Neurogenic inflammation in airways and its modulation, Arch Int Pharmacodyn 303:67–82 (1990).PubMedGoogle Scholar
  93. 93.
    P.J. Barnes, Asthma as an axon reflex, Lancet i:242–245 (1986).CrossRefGoogle Scholar
  94. 94.
    R.W. Fuller, C.H.S. Dixon, F.M.C. Cuss, and P.J. Barnes, Bradykinin-induced bronchoconstriction in man: mode of actionAn Rev Respir Dis 135:176–180 (1987).Google Scholar
  95. 95.
    M.P. Kaufman, H.M. Coleridge, J.C.G. Coleridge, and D.G. Baker, Bradykinin stimulates afferent vagal C-fibres in intrapulmonary airways of dogs, J Appl Physiol 48:511–517 (1980).PubMedGoogle Scholar
  96. 96.
    M. Ichinose, N.G. Belvisi, and P.J. Barnes, Bradykinin-induced bronchoconstriction in guinea-pig in vivo: role of neural mechanisms, J Pharmacol Exp Ther 253:1207–1212 (1990).Google Scholar
  97. 97.
    C.M.S. Dixon and P.J. Barnes, Bradykinin induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate, Br J Clin Pharnacol 270:8310–8360 (1989).Google Scholar
  98. 98.
    S.L. Ollerenshaw, D.L. Jarvis, A.J. Woolcock, T. Scheibner, and C.E. Sullivan, Substance P immunoreactive nerve fibres in airways from patients with and without asthma, Am Rev Respir Dis 139:A237 (1989).Google Scholar
  99. 99.
    R.N. Lindsay and A.J. Harmar, Nerve growth factor regulates expression of neuropeptide genes in sensory neurons, Nature 337:362–364 (1989).PubMedCrossRefGoogle Scholar
  100. 100.
    D.M. McDonald, Neurogenic inflammation in the respiratory tract: actions of sensory nerve mediators on blood vessels and epithelium of the airway mucosa, Am Rev Respir Dis 136:S65–S72 (1987).PubMedGoogle Scholar
  101. 101.
    D.B. Jacoby, J. Tamaoki, D.B. Borson, and J.A. Nadel, Influenza infection increases airway smooth muscle responsiveness to substance P in ferrets by decreasing enkephalinase, J Appl Physiol 64:2653–2658 (1988).PubMedGoogle Scholar
  102. 102.
    E. Umeno, D.M. McDonald, and J.A. Nadel, Hypertonic saline increases vascular permeability in the rat trachea by producing neurogenic inflammation, J Clin Invest 85:1905–1908 (1990).PubMedCrossRefGoogle Scholar
  103. 103.
    D.J. Dusser, T.D. Djocic, D.B. Borson, and J.A. Nadel, Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig, J Clin Invest 84:900–906 (1989).PubMedCrossRefGoogle Scholar
  104. 104.
    D. Sheppard, J.E. Thompson, L. Scypinski, D.J. Dusser, J.A. Nadel, and D.B. Borson, Toluene diisocyanate increases airway responsiveness to substance P and decreases airway and neutral endopeptidase, J Clin Invest 81:1111–1115 (1988).PubMedCrossRefGoogle Scholar
  105. 105.
    H Kuo,P., J.A.L. Rohde, P.J. Barnes, and D.F. Rogers, Morphine inhibition of cigarette smoke induced goblet cell secretion in guinea pig trachea in vivo, Respir. Med. 84:425 (1990).Google Scholar
  106. 106.
    K. Alving, R. Natran, J.S. Lacroix, and J.N. Lundberg, Allergen challenge induces vasodilation in pig bronchial circulation via a capsaicin sensitive mechanism, Acta Physiol Scand 134:571–572 (1988).PubMedCrossRefGoogle Scholar
  107. 107.
    J.E. Thompson, L.A. Scypinski, T. Gordon, and D. Sheppard, Tachykinins mediate the acute increase in airway responsiveness by toluene diisocyanate in guinea-pigs, Am. Rev. Respir. Dis. 136:43–49 (1987).PubMedCrossRefGoogle Scholar
  108. 108.
    A.M. Reynolds and R.D. McEvoy, Tachykinins mediate hypocapnia-induced bronchoconstriction in guinea pigs, J Appl Physiol 67:2454–2460 (1989).PubMedGoogle Scholar
  109. 109.
    J.O. Lötvall, K.P. Hui, C-G. Löfdahl, P.J. Barnes, and K.F. Chung, Capsaicin pretreatment does not inhibit allergen-induced airway microvascular leakage in guinea pig, Allergy 46:105–108 (1991).PubMedCrossRefGoogle Scholar
  110. 110.
    T. Matsuse, R.J. Thomson, X-R. Chen, H. Salari, and R.R. Schellenberg, Capsaicin inhibits airway hyperresponsiveness, but not airway lipoxygenase activity nor eosinophilia following repeated aerosolized antigen in guinea pigs, Am Rev Respir Dis (1991).Google Scholar
  111. 111.
    G. Wolfe, Neue aspekte zur pathogenese und therapie der hyperflektorischen rhinopathie, Laryngol Rhinol Otol 67:438–445 (1988).CrossRefGoogle Scholar
  112. 112.
    P.J. Barnes, M.G. Belvisi, and D.F. Rogers, Modulation of neurogenic inflammation: novel approaches to inflammatory diseases, Trends Pharmacol Sci 11:185–189 (1990).PubMedCrossRefGoogle Scholar
  113. 113.
    L. van Ranst and J.M. Lauweryns, Effects of long-term sensory vs. sympathetic denervation of the distribution of calcitonin gene-related peptide and tyrosine hydroxylase immunoreactivity in the rat lung, J. Neuroimmunol. 29:131–138 (1990).PubMedCrossRefGoogle Scholar
  114. 114.
    D. Stretton and P.J. Barnes, Modulation of cholinergic neurotransmission in guinea pig trachea by neuropeptide Y, Br J Pharmacol 93:672–678 (1988).PubMedCrossRefGoogle Scholar
  115. 115.
    F. Cuttitta, J. Fedorko, J. Gu, A.M. Labacq-Verheyden, R.I. Linnoila, and J.F. Battey, Gastrin releasing peptide gene associated peptides are expressed in normal human fetal lung and small cell lung cancer: a novel peptide family in man, J Clin Endocrinol Metab 67:576–583 (1988).PubMedCrossRefGoogle Scholar
  116. 116.
    M.E. Sunday, L.M. Kaplan, E. Motoyama, W.W. Chin, and E.R. Spindel, Gastrin releasing peptide (mammalian bombesin) gene expression in health and disease, Lab. Invest. 59:5–24 (1988).PubMedGoogle Scholar
  117. 117.
    P.J. Woll and E. Rozengurt, Neuropeptides as growth regulators, Br Med Bull 45:492–505 (1989).PubMedGoogle Scholar
  118. 118.
    M. Impicciatore and G. Bertaccini, The bronchconstrictor action of the tetradecapeptide bombesin in the guinea pig, J Pharr Pharmacol 25:812–815 (1973).Google Scholar
  119. 119.
    N.G. Belvisi, C.D. Stretton, and P.J. Barnes, Bombesin-induced bronchoconstriction in the guinea pig: mode of action, J Pharmacol Exp Ther in press:(1991).Google Scholar
  120. 120.
    J.D. Lundgren, N. Ostrowski, J.N. Baraniuk, J.H. Shelhamer, and M.A. Kaliner, Gastrin releasing peptide stimulates glycoconjugate release from feline tracheal explants, Am J Physiol 258:L68–L74 (1990).PubMedGoogle Scholar
  121. 121.
    C.D. Stretton and P.J. Barnes, Cholecystokinin octapeptide constricts guinea-pig and human airways, Br J Pharmacol 97:675–682 (1989).PubMedCrossRefGoogle Scholar
  122. 122.
    K. Sekizawa, P.D. Graf, and J.A. Nadel, Somatostatin potentiates cholinergic neurotransmission in ferret trachea, J Appl Physiol 67:2397–2400 (1989).PubMedGoogle Scholar
  123. 123.
    F. Lembeck, J. Donnerer, and L. Bartho, Inhibition of neurogenic vasodilation and plasma extravasation by substance P antagonists, somatostatin and [D-Met2, Pro5]-enkephalinamide, Eur J Pharmacol 85:171–176 (1982).PubMedCrossRefGoogle Scholar
  124. 124.
    A. Rokaeus, Galanin: a newly isolated biologically active peptide, Trends Neurol Sci 10:158–164 (1987).Google Scholar
  125. 125.
    S. Guiliani, R. Amann, A.M. Papini, C.A. Maggi, and A. Meli, Modulatory action of galanin on responses due to anitdromic activation of peripheral terminals of capsaicin sensitive sensory nerves, Eur J Pharmacol 163:91–96 (1989).CrossRefGoogle Scholar
  126. 126.
    T. Shimosegawa, H.D. Foda, and S.I. Said, [Met]enkephalin-Arg6-G1y7-Leu8- immunoreactive nerves in guinea pig and rat lungs: distribution,origin, and coexistence with vasoactive intestinal polypeptide immunoreactivity, Neuroscience 36:737–750 (1990).PubMedCrossRefGoogle Scholar
  127. 127.
    M.G. Belvisi, D.F. Rogers, and P.J. Barnes, Neurogenic plasma extravasation: inhibition by morphine in guinea pig airways in vivo, J Appl Physiol 66:268–272 (1989).PubMedGoogle Scholar
  128. 128.
    M.G. Belvisi, K.F. Chung, D.M. Jackson, and P.J. Barnes, Opioid modulation of non-cholinergic neural bronchoconstriction in guinea-pig in in vivo, Br. J. Pharmacol. 95:413–418 (1988).PubMedCrossRefGoogle Scholar
  129. 129.
    R.M. Snider, J.W. Constantine, J.A. Lowe, K.P. Longo, W.S. Lebel, H.A. Woody, S.E. Drozda, M.C. Desai, F.J. Vinick, R.W. Spencer, and H-J. Hess, A potent nonpeptide antagonist of the substance P (MK1) receptor, Science 251:435–437 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Peter J. Barnes
    • 1
  1. 1.National Heart and Lung InstituteLondonUK

Personalised recommendations