Skip to main content

Injury and Repair of the Airway Epithelium in Asthma

  • Chapter
  • 150 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 229))

Abstract

Injury of the surface epithelium of the airway is a well recognized and prominent feature in asthma (1,2). Desquamation of clusters of ciliated epithelial cells occur regularly. Recognized as a feature of asthma, these epithelial cell clusters have been termed “creola bodies (3)”. Histologic studies of airways following an acute episode of asthma often reveal marked loss of the surface lining cells. Occasionally, the basement membrane may be covered only by basal cells. The precise mechanisms which lead to this damage of the airway epithelium are unclear. Current concepts suggest, however, that the epithelium is damaged as a consequence of the inflammatory process which characterizes an acute episode of asthma. Vasodilatation with leakage of fluid into the interstitial space may create hydrostatic forces which could damage the surface epithelium (4). In addition, acute asthma is characterized by a marked accumulation of acute inflammatory cells including eosinophils and neutrophils (5-11). Both of these cell types possess a considerable armamentarium of proteases, oxidants and toxic molecules. There are, therefore, a number of mechanisms by which airway epithelial cell damage could result. In this regard, eosinophil major basic protein has been demonstrated to be toxic to airway epithelial cells in culture (12). Similarly, activated neutrophils are capable of causing airway epithelial cell cytotoxicity (13). Purified human neutrophil elastase, moreover, is capable of inducing epithelial cell detachment from the subjacent matrix (14).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Spencer. Pathology of the Lung. Pergamon Press, Oxford, England, 1968, pp. 715–720.

    Google Scholar 

  2. Laitinen LA, Laitinen A. Pathology of Human Asthma. In: Asthma Its Pathology and Treatment, MA Kaliner, PJ Barnes and CGA Persson (eds.). Marcel Dekker, Inc., 1991; 103–134.

    Google Scholar 

  3. Naylor B, Railey C. A pitfall in the cytodiagnosis of sputum of asthmatics. J Clin Pathol 1964; 27:84–89.

    Article  Google Scholar 

  4. Fick RB, Metzger WJ, Richerson HB, Zavala DC, Moseley PL, Schoderbek WE, Hunninghake GW. Increased bronchovascular permeability after allergen exposure in sensitive asthmatics. J Apply Physiol 1987; 63:1147–1155.

    Google Scholar 

  5. Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamota P, Monick M, Sjoerdsma K, Hunninghake GW. Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Am Rev Respir Dis 1987; 135:433–440.

    PubMed  CAS  Google Scholar 

  6. Gerblich AA, Salik H, Schuyler MR. Dynamic T-cell changes in peripheral blood and bronchoalveolar lavage after antigen bronchoprovocation in asthmatics. Am Rev Respir Dis 1991; 143:533–537.

    PubMed  CAS  Google Scholar 

  7. Fabbri LM, Boschetto P, Zocca E, et al. Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis 1987; 136:36–42.

    Article  PubMed  CAS  Google Scholar 

  8. De Monchy JGR, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter JH, de Vries K. Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 1985; 131:373–376.

    PubMed  Google Scholar 

  9. Metzger WJ, Richerson HB, Worden K, Monick M, Hunninghake GW. Bronchoalveolar lavage of allergic asthmatic patients following allergen bronchoprovocation. Chest 1986; 89:477–483.

    Article  PubMed  CAS  Google Scholar 

  10. Diaz P, Gonzalez MC, Galleguillos FR, Ancic P, Gromwell O, Sheperd D, Durham SR, Gleich GJ, Kay AB. Leukocytes and mediators in bronchoalveolar lavage during allergen-induced late-phase asthmatic reactions. Am Rev Respir Dis 1989; 139:1383–1389.

    PubMed  CAS  Google Scholar 

  11. Fabbri LM, Boschetto P, Zocca E, et al. Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis 1987; 136:36–42.

    Article  PubMed  CAS  Google Scholar 

  12. Hastie AT, Loegering DA, Gleich GJ, Kueppers F. The effect of purified human eosinophil major basic protein on mammalian ciliary activity. Am Rev Respir Dis 1987; 135:848–853.

    PubMed  CAS  Google Scholar 

  13. Robbins et al. (Submitted).

    Google Scholar 

  14. Rickard K, Rennard S. Neutrophil elastase causes detachment of bronchial epithelial cells from extracellular matrix. Am Rev Respir Dis 1989; 139:406.

    Google Scholar 

  15. Snider GL, Lucey EC, Christensen TG, Stone PJ, Calore JD, Catanese A, Franzblau C. Emphysema and bronchial secretory cell metaplasia induced in hamsters by human neutrophil products. Am Rev Respir Dis 1984; 129:155–160.

    PubMed  CAS  Google Scholar 

  16. Christensen TG, Korthy AL, Snider GL, Hayes JA. Irreversible bronchial goblet cell metaplasia in hamsters with elastase-induced panacinar emphysema. J Clin Invest 1977; 59:397–404.

    Article  PubMed  CAS  Google Scholar 

  17. Robbins RA, Klassen LW, Linder J, Gossman GL, Kendall TJ, Rennard SI. T-helper cell chemotaxis induced by interleukin 2 is not inhibited by anti-tac antibodies. Clin Res 1987; 35:540A.

    Google Scholar 

  18. Lane BP, Gorden R. Regeneration of rat tracheal epithelium after mechanical injury. Proc Soc Exp Biol Med 1974; 145:1139–1144.

    PubMed  CAS  Google Scholar 

  19. Mc Dowell EM, Ben T, Newkirk C, Chang S, De Luca LM. Differentiation of tracheal mucociliary epithelium in primary cell culture recapitulates normal fetal development and regeneration following injury in hamsters. Am J Pathol 1987; 129:511–522.

    PubMed  CAS  Google Scholar 

  20. Shoji S, Ertl RF, Linder J, Koizumi S, Duckworth WC, Rennard SI. Bronchial epithelial cells respond to insulin and insulin-like growth factor-I as a chemoattractant. Am J Respir Cell Molec Biol 1990; 2:553–557.

    CAS  Google Scholar 

  21. Shoji S, Rickard KA, Ertl RF, Linder J, Rennard SI. Lung fibroblasts produce chemotactic factors for bronchial epithelial cells. Am J Physiol 1989; 257:L71–L79.

    PubMed  CAS  Google Scholar 

  22. Tsukamoto Y, Helsel WE, Wahl SM. Macrophage production of fibronectin, a chemoattractant for fibroblasts. J Immunol 127:673–678.

    Google Scholar 

  23. Bitterman PB, Rennard SI, Hunninghake GW, Crystal RG. Human alveolar macrophage growth factor for fibroblasts: regulation and partial characterization. J Clin Invest 1982; 70:806–822.

    Article  CAS  Google Scholar 

  24. Rennard SI, Hunninghake GW, Bitterman PB, Crystal RG. Production of fibronectin by the human alveolar macrophage: a mechanism for the recruitment of fibroblasts to sites of tissue injury interstitial lung diseases. Proc Natl Acad Sci USA 1981; 78:7147–7151.

    Article  PubMed  CAS  Google Scholar 

  25. Vartio T, Kaelin H, Vaheri A. Comparison of polypeptides from cultured human fibroblasts and sarcoma cells. Biochem Biophys Acta 1978; 536:350–355.

    Article  PubMed  CAS  Google Scholar 

  26. Cook JJ, Haynes KM, Werther GA. Mitogenic effects of growth hormone in cultured human fibroblasts. Evidence for action via local insulin-like growth factor I production. J Clin Invest 1988; 81:206–212.

    Article  PubMed  CAS  Google Scholar 

  27. Shoji S, Ertl RF, Linder J, Romberger DJ, Rennard SI. Bronchial epithelial cells produce chemotactic activity for bronchial epithelial cells: Possible role of fibronectin in airway repair. Am Rev Resp Dis 1990; 141:218–225.

    PubMed  CAS  Google Scholar 

  28. Ruoslahti E. Fibronectin and its receptors. Ann Rev Biochem 1988; 57:375–413.

    Article  PubMed  CAS  Google Scholar 

  29. Paul JI, Schwarzbauer JE, Tamkun JW, Hynes RO. Cell-type-specific fibronectin subunits generated by alternative splicing. J Biol Chem 1986; 261:12258–12265.

    PubMed  CAS  Google Scholar 

  30. Ignotz RA, Massagae J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986; 261:4337–4345.

    PubMed  CAS  Google Scholar 

  31. Fine A, Goldstein RH. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 1987; 262:3897–3902.

    CAS  Google Scholar 

  32. Romberger D, Matsuda N, Thompson AB, Bohling T, Claassen L, Beckmann J, Rennard S. Transforming growth factor-beta stimulates growth of bovine tracheal glandular cells in vitro. Chest 1989; 96:2115.

    Google Scholar 

  33. Sacco O, Rennard SI, Spurzem JR. In vitro production of active transforming growth factor beta by bronchial epithelial cells. Am Rev Respir Dis 1991; 143:A202.

    Google Scholar 

  34. Sacco O, Romberger D, Beckmann J, Rennard SI, Spurzem JR. Autocrine/paracrine modulation of fibronectin production by bronchial epithelial cells. Am Rev Respir Dis 1991; 143:A528.

    Google Scholar 

  35. Anonymous.

    Google Scholar 

  36. Rickard KA, Taylor J, Spurzem JR, Rennard S. Extracellular matrix and bronchial epithelial cell migration. Chest (In press).

    Google Scholar 

  37. Rickard K, Rennard S. Bronchial Epithelial Cells can Attach to Extracellular Matrix Components through Both RGDS Sensitive and Insensitive Mechanisms. Am Rev Resp Dis. 1989; 139:408.

    Google Scholar 

  38. Sheppard D, Rozzo C, Starr L, Quaranta V, Erle DJ, Pytela R. Complete amino acid sequence of a novel integrin beta subunit (beta 6) identified in epithelial cells using the polymerase chain reaction. J Biol Chem 1990; 265:11502–11507.

    CAS  Google Scholar 

  39. Spurzem JR, Sacco O, Rennard SI. The expression of fibronectin and vitronectin receptors in regulated on bronchial epithelial cells. Am Rev Respir Dis 1990; 141:A705.

    Google Scholar 

  40. Humphries MJ. The molecular basis and specificity of integrin-ligand interactions. J Cell Sci 1990; 97:585–592.

    PubMed  CAS  Google Scholar 

  41. Van Scott MR, Yankaskas JR, Boucher RC. Culture of airway epithelial cells: research techniques. Exp Lung Res 1986; 11:75–94.

    Article  PubMed  Google Scholar 

  42. Takizawa H, Beckmann J, Shoji S, Claassen LR, Ertl RF, Linder J, Rennard SI. Pulmonary macrophages can stimulate cell growth of bovine bronchial epithelial cells. Am J Respir Cell Mol Biol 1990; 2:233–234.

    Google Scholar 

  43. Shoji S, Rickard KA, Takizawa H, Ertl RF, Linder J, Rennard SI. Lung fibroblasts produce growth stimulatory activity for bronchial epithelial cells. Am Rev Resp Dis 1990; 141:433–439.

    PubMed  CAS  Google Scholar 

  44. Breeze RG, Wheeldon EB. The cells of the pulmonary airways. Am Rev Respir Dis 1977; 116:705–777.

    PubMed  CAS  Google Scholar 

  45. Lechner JF, Mc Clendon IA, La Veck MA, Shamsuddin AM, Harris CC. Differential control by platelet factors of squamous differentiation in normal and malignant human bronchial epithelial cells. Cancer Res 1983; 43:5915–5921.

    PubMed  CAS  Google Scholar 

  46. Pfeifer AMA, Lechner JF, Masui T, Reddel RR, Mark GE, Harris CC. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes. Environ Health Perspect 1989; 80:209–220.

    Article  PubMed  CAS  Google Scholar 

  47. Ponec M, Weerheim A, Kempenaar J, Boonstra J. Proliferation and differentiation of human squamous carcinoma cell lines and normal keratinocytes: effects of epidermal growth factor, retinoids, and hydrocortisone. In Vitro Cell Dev Biol 1988; 24:764–770.

    Article  PubMed  CAS  Google Scholar 

  48. Jetten AM, Anderson K, Deas MA, Kagechika H, Lotan R, Rearick JI, Shudo K. New benzoic acid derivatives with retinoid activity: lack of direct correlation between biological activity and binding to cellular retinoic acid binding protein. Cancer Res 1987; 47:3523–3527.

    PubMed  CAS  Google Scholar 

  49. Romberger DJ, Claassen L, Toews M, Beckmann J, Rennard SI. Isoproterenol alters the induction of fibronectin by TGF-ß from bronchial epithelial cells. Am Rev Respir Dis 1991; 143:A532.

    Google Scholar 

  50. Wu R, Nolan E, Turner C. Expression of tracheal differentiated functions in serum-free hormone-supplemented medium. J Cell Physiol 1985; 125:167–181.

    Article  PubMed  CAS  Google Scholar 

  51. Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol 1988; 24:420–428.

    Article  PubMed  CAS  Google Scholar 

  52. Gauss-Muller E, Kleinman HK, Martin GR, Schiffmann E. Role of attachment factors and attractants in fibroblast chemotaxis. J Lab Clin Med 1980; 96:1071–1080.

    PubMed  CAS  Google Scholar 

  53. Postlethwaite AE, Kesky-Oja J, Balian G, Kang AH. Induction of fibroblast chemotaxis by fibronectin: Localization of the chemotactic region to a 140,000 molecular weight non-gelatin binding fragment. J Exp Med 1980; 153:494–499.

    Article  Google Scholar 

  54. Thompson AB, Ghafouri MA, Stahl MG, Robbins RA, Rennard SI. Assessment of neutrophilic bronchial inflammation by bronchoalveolar lavage in bronchitis. Am Rev Respir Dis 1986; 133:325A.

    Google Scholar 

  55. Kawamoto M, Koizumi S, Tate L, Ertl RF, Rennard SI. Unpublished observations.

    Google Scholar 

  56. Theodore J, Starnes VA, Lewiston NJ. Obliterative bronchiolitis. Clin Chest Med 1990; 22:309–321.

    Google Scholar 

  57. Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. The Lancet 1989; 1:520–524.

    Article  CAS  Google Scholar 

  58. Peat JK, Woolcock AJ, Cullen K. Rate of decline of lung function in subjects with asthma. Eur J Respir Dis 1987; 70:171–179.

    PubMed  CAS  Google Scholar 

  59. Brown PJ, Greville HW, Finucane KE. Asthma and irreversible airflow obstruction. Thorax 1984; 39:131–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rennard, S.I. et al. (1992). Injury and Repair of the Airway Epithelium in Asthma. In: Olivieri, D., Barnes, P.J., Hurd, S.S., Folco, G.C. (eds) Asthma Treatment. NATO ASI Series, vol 229. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3446-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3446-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6525-9

  • Online ISBN: 978-1-4615-3446-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics