Skip to main content

Soliton Modelling for the Proton Transfer in Hydrogen-Bonded Systems

  • Chapter
Proton Transfer in Hydrogen-Bonded Systems

Part of the book series: NATO ASI Series ((NSSB,volume 291))

Abstract

The longitudinal and transverse collective dynamics of hydrogen-bonded protons is studied on the basis of a zig-zag model in which the heavy negative ions of the background sublattice are considered to be frozen. The on-site potential for each proton is constructed as an appropriate sum of the Morse potentials. The nearest-neighbor protons are assumed to interact harmonically with each other. Ionic and orientational defect solutions of soliton type have been obtained numerically by using the steepest descent minimization scheme. On the basis of the zig-zag modelling a simple one-dimensional model which belongs to the nonlinear Klein-Gordon family has been used for the studies of the longitudinal proton transfer under external electric fields and damping.

Deceased before the completion of this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.V. Hobbs, “Ice Physics” Clarendon, Oxford (1974).

    Google Scholar 

  2. “Physics of Ice”, N. Riehl, B. Bullemer, and H. Engelhardt, eds., Plenum, New York (1969).

    Google Scholar 

  3. “Physics and Chemistry of Ice”, E. Whalley, S.J. Jones, and L.W. Gold, eds., Royal Society of Canada, Ottawa (1973).

    Google Scholar 

  4. A. Kuwada, A.R. McGhie, and M.M. Labes, J. Chem. Phys. 52: 1438 (1970).

    Google Scholar 

  5. V.H. Schmidt, J.E. Drumheller, and F.L. Howell, Phys. Rev. B4: 4582 (1971).

    Google Scholar 

  6. M. Springborg, Phys. Rev. Lett. 59: 2287 (1987); Phys. Rev. B38: 1438 (1988).

    Google Scholar 

  7. R.W. Jansen, R. Bertocini, D.A. Pinnick, A.I. Katz, R.C. Hanson, O.F. Sankey, and M. O’Keeffe, Phys. Rev. B35: 9830 (1987).

    Google Scholar 

  8. J.F. Nagle and H.J. Morowitz, Proc. Natl. Acad. Sci. U.S.A. 75: 298 (1978);J.F. Nagle, M. Mille, and H.J. Morowitz, J. Chem. Phys. 72: 3959 (1980); E.W. Knapp, K. Schulten, and Z. Schulten, Chem. Phys. 46: 215 (1980).

    Google Scholar 

  9. J.F. Nagle and S. Tristram-Nagle, J. Membrane Biology 74: 1 (1983).

    Article  CAS  Google Scholar 

  10. N. Bjerrum, K. danske Vidensk. Selsk. Skr. 27: 1 (1951); Science 115: 385 (1952).

    Google Scholar 

  11. T. Mitani, G. Saito, and H. Vrayama, Phys. Rev. Lett. 60: 2299 (1988).

    Article  CAS  Google Scholar 

  12. B. Brzezinski, G. Zundel, and R. Kramer, J. Phys. Chem. 91: 3077 (1987).

    Article  CAS  Google Scholar 

  13. G.P. Johari and S.J. Jones, J. Chem. Phys. 82: 1019 (1985); S.F. Fischer, G.L. Hofacker, and M.A. Ratner, J. Chem. Phys. 52: 1934 (1970).

    Google Scholar 

  14. J.H. Weiner and A. Askar, Nature 226: 842 (1970).

    Article  CAS  Google Scholar 

  15. V.Ya. Antonchenko, A.S. Davydov, A.V. Zolotaryuk, phys. stat. solidi (b) 115: 631 (1983); E.W. Laedke, K.H. Spatschek, M. Wilkens, Jr. and A.V. Zolotaryuk, Phys. Rev. A32: 1161 (1985).; M. Peyrard, St. Pnevmatikos, and N. Flytzanis, Phys. Rev. A36: 903 (1987); H. Weberpals and K.H. Spatschek, Phys. Rev. A36: 2946 (1987); H. Lan and K. Wang, Phys. Lett. A139: 61 (1989); E.S. Nylund and G.P. Tsironis, Phys. Rev. Lett. 66: 1886 (1991).

    Google Scholar 

  16. Y. Kashimori, T. Kikuchi, and K. Nishimoto, J. Chem. Phys. 77 : 1904 (1982).

    Article  CAS  Google Scholar 

  17. S. Yomosa, J. Phys. Soc. Jpn. 51: 3318 (1982); 52: 1866 (1983).

    Google Scholar 

  18. A.V. Zolotaryuk, K.H. Spatschek, and E.W. Laedke, Phys. Lett. A101: 517 (1984); A.V. Zolotaryuk, Teor. Mat. Fiz. 68: 415 (1986) [Sov. Theor. Math. Phys. 68: 916 (1987)]; J. Halding and P.S. Lomdahl, Phys. Rev. A37: 2608 (1988); D. Hochstrasser, H. Biittner, H. Desfontaines, and M. Peyrard, Phys. Rev. A38: 5332 (1988); H. Desfontaines and M. Peyrard, Phys. Lett. A142: 128 (1989).

    Google Scholar 

  19. St. Pnevmatikos, Phys. Lett. Al22: 249 (1987).

    Google Scholar 

  20. A.V. Zolotaryuk, Kink models in biophysics, in: “Biophysical Aspects of Cancer”, J. Fiala and J. Pokorny, eds., Charles University, Prague (1987), pp. 179–188.

    Google Scholar 

  21. St. Pnevmatikos, Phys. Rev. Lett. 60: 1534 (1988); G.P. Tsironis and St. Pnevmatikos, Phys. Rev. B39: 7161 (1989).

    Google Scholar 

  22. A. Gordon, Physica B146: 373 (1987); B150: 319 (1988); B151: 453 (1988); L.N. Kristoforov and A.V. Zolotaryuk, phys. stat. solidi (b) 146: 487 (1988).

    Google Scholar 

  23. E.S. Kryachko, Solid State Commun. 65: 1609 (1988); O.E. Yanovitskii and E.S. Kryachko, phys. stat. solidi (b) 147: 69 (1988).

    Google Scholar 

  24. A.V. Zolotaryuk and St. Pnevmatikos, Two-component kink dynamics of hydrogen-bonded chains, in: “Singular Behavior and Nonlinear Dynamics”, St. Pnevmatikos, T. Bountis, and Sp. Pnevmatikos, eds., World Scientific, Singapore (1989), vol. 2, pp. 384–410; St. Pnevmatikos, G.P. Tsironis, and A.V. Zolotaryuk, J. Molec. Liquids 41: 85 (1989).

    Google Scholar 

  25. A.V. Zolotaryuk and A.V. Savin, Proton conductivity in systems with hydrogen bonding: a new application of the soliton theory, in: “Solitons and Applications”, V.G. Makhankov, V.K. Fedyanin, and O.K. Pashaev, eds., World Scientific, Singapore (1989), pp. 429–433; A.V. Zolotaryuk and St. Pnevmatikos, Two-sublattice nonlinear dynamics of kink-bearing models, in: “Nonlinear World”, A.G. Sitenko, V.E. Zakharov, and V.M. Chernousenko, eds., Naukova Dumka, Kiev (1989), vol. 1, pp. 211–214; A.V. Zolotaryuk, St. Pnevmatikos, and A.V. Savin, Physica D 44 (1991).

    Google Scholar 

  26. E.S. Kryachko, Chem. Phys. 143: 359 (1990).

    Article  CAS  Google Scholar 

  27. A.V. Savin, A two-dimensional soliton model for proton transport in hydrogen-bonded molecular chains, in: “Nonlinear World”, A.G. Sitenko, V.E. Zakharov, and V.M. Chernousenko, eds., Naukova Dumka, Kiev (1989), vol. 1, pp. 165–168; St. Pnevmatikos, A.V. Savin, and A.V. Zolotaryuk, Longitudinal and transverse proton collective dynamics on a two-dimensional multistable substrate, in: “Nonlinear Coherent Structures” (Lecture Notes in Physics, vol. 353), M. Barthes and J. Leon, eds., Springer, Berlin (1990), pp. 83–92.

    Google Scholar 

  28. A.V. Zolotaryuk and St. Pnevmatikos, Phys. Lett. A143: 233 (1990); St. Pnevmatikos, A.V. Savin, A.V. Zolotaryuk, Yu.S. Kivshar, and M.J. Velgakis, Phys. Rev. A43: 5518 (1991).

    Google Scholar 

  29. A.V. Savin and A.V. Zolotaryuk, Two-sublattice solitons in hydrogen-bonded chains with dynamical disoder, in: “Nonlinearity and Disorder”, F.Kh. Abdullaev, A.R. Bishop, and St. Pnevmatikos, eds., World Scientific, Singapore (1991).

    Google Scholar 

  30. A. Anderson, B.H. Torrie, and W.S. Tse, J. Raman Spectroscopy 10: 148 (1981).

    Article  CAS  Google Scholar 

  31. J. Frenkel and T. Kontorova, J. Phys. USSR 1: 137 (1939).

    CAS  Google Scholar 

  32. St. Pnevmatikos, “Solitons: Part II. Topological Anharmonic Waves” (in Greek), Crete University, Heraklion (1991).

    Google Scholar 

  33. J.A. Krumhansl and J.R. Schrieffer, Phys. Rev. B11: 3535 (1975).

    Google Scholar 

  34. J.F. Currie, J.A. Krumhansl, A.R. Bishop, and S.E. Trullinger, Phys. Rev. B22: 477 (1980).

    Google Scholar 

  35. C.A. Condat, R.A. Guyer, and M.D. Miller, Phys. Rev. B27: 474 (1983); R.M. DeLeonardis and S.E. Trullinger, Phys. Rev. B27: 1867 (1983).

    Google Scholar 

  36. E. Maggari, Z. Phys. B 550: 137 (1984).

    Article  Google Scholar 

  37. J.C. Kimball, Phys. Rev. B21: 2104 (1980).

    Google Scholar 

  38. O.H. Olsen and M.R. Samuelsen, Phys. Rev. B28: 210 (1983).

    Google Scholar 

  39. St. Pnevmatikos, A.V. Savin, A.V. Zolotaryuk, Yu.S. Kivshar, and M.J. Velgakis, Nonlinear transport in hydrogen-bonded chains: solitons under external fields and damping (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

St. Pnevmatikos, Savin, A.V., Zolotaryuk, A.V. (1992). Soliton Modelling for the Proton Transfer in Hydrogen-Bonded Systems. In: Bountis, T. (eds) Proton Transfer in Hydrogen-Bonded Systems. NATO ASI Series, vol 291. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3444-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3444-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6524-2

  • Online ISBN: 978-1-4615-3444-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics