Advertisement

Evolution of Instrumentation for Taylor-Couette Flow

  • Russell J. Donnelly
Part of the NATO ASI Series book series (NSSB, volume 297)

Abstract

The organizers of this meeting discussed with me some time ago just what they would like to hear about. I recognized the wish to provide some long term perspective on our field, and I ventured to suggest an overview of experimental techniques might be of some interest. I would like to make the point that the study of Taylor-Couette flow has almost inevitably brought forth the highest level of experimental technique from the very beginning. I will try to illustrate that fact by showing you examples of a wide variety of instrumentation from the last 100 years of our subject.

Keywords

Couette Flow Outer Cylinder Torque Measurement Taylor Vortex Laser Doppler Velocimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isaac Newton, Mathematical Principles ed. F. Cajori, p. 385, University of California Press, Berkeley (1946).Google Scholar
  2. 2.
    G. G: Stokes, Mathematical and Physical Papers, Vol 1, p. 102 Cambridge University Press (1880); Vol 5, (1905).Google Scholar
  3. 3.
    Max Margules, “Über die bestimmung des reibungs- und gleitungs-coëfficienten Aus eben bewegungen einer flüssigkeit” “, Wiener Berichte, (Second series) 83, 588–602 (1881).MATHGoogle Scholar
  4. 4.
    H.R. Lillie, “The Margules method of measuring viscosities modified to give absolute values”, Phys. Rev. 36 347–362, (1930).ADSCrossRefGoogle Scholar
  5. 5.
    A. Mallock, “Determination of the viscosity of water”, Proc. Roy. Soc. 45, 126–132 (1888).CrossRefGoogle Scholar
  6. 6.
    A. Mallock, “Experiments on fluid viscosity” Phil. Trans. Roy. Soc. 187, 41–56 (1896).ADSMATHCrossRefGoogle Scholar
  7. 7.
    Lord Rayleigh “Further remarks on the stability of viscous fluid motion”, Philos. Mag. vol. 28, 609 (1914). [Scientific Papers,Lord Rayleigh, #388, Dover Publications 1964].CrossRefGoogle Scholar
  8. 8.
    M. Couette, “Sur un nouvel appareil pour l’étude Du frottement des liquides”, Comptes Rendues 107, 388–390 (1888); “La viscosité des liquides”, Bull. des Sciences Physiques 4–62, 262–278 (1888), Soc. Francoise de Physiques, Paris, Bull des Scéances 60–61, 108–109 (1889).Google Scholar
  9. 9.
    M. Couette, “Études sur le frottment des liquides”, Ann. Chim. Phys. Ser VI Vol 21 433–510 (1890).MATHGoogle Scholar
  10. 10.
    J.A. Bearden, “A precision determination of the viscosity of air”, Phys. Rev. 56, 1023–1040, (1939)ADSCrossRefGoogle Scholar
  11. 11.
    H.L. Dryden, F.P. Murnaghan, H. Bateman, Hydrodynamics Dover Publications, New York (1956), [Republication of Bulletin 84 of the National Research Council, Report of the Committee on Hydrodynamics,1932.]MATHGoogle Scholar
  12. 12.
    L. Talbot, Editor, Rarefied Gas Dynamics Academic Press, New York, (1961).Google Scholar
  13. 13.
    G.I. Taylor, “Stability of a viscous liquid contained between two rotating cylinders”, Phil. Trans. Roy. Soc. A,223, 289 (1923).ADSMATHCrossRefGoogle Scholar
  14. 14.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford, Clarendon Press (1961).Google Scholar
  15. 15.
    K.C. Wali, Chandra, A Biography of S. Chandrasekhar, University of Chicago Press (1991).MATHGoogle Scholar
  16. 16.
    G.I. Taylor, “Fluid friction between rotating cylinders I–Torque measurements”, Proc Roy Soc A, 157, 546–564, (1936)ADSCrossRefGoogle Scholar
  17. G.I. Taylor, “Fluid friction between rotating cylinders II–Distribution of velocity between concentric cylinders when outer one is rotating and inner one is at rest”, Proc Roy Soc A, 157, 565–578 (1936)ADSCrossRefGoogle Scholar
  18. 17.
    A.C. Hollis Hallet, “Experiments with a rotating cylinder viscometer in liquid helium II,” Proc. Camb. Phil. Soc. 49, 717–727 (1953).ADSCrossRefGoogle Scholar
  19. 18.
    R.J. Donnelly, “Experiments on the stability of viscous flow between rotating cylinders, I. Torque measurements” Proc Roy Soc A 246, 312–325 (1958).ADSCrossRefGoogle Scholar
  20. 19.
    R.J. Donnelly, M. Ozima, “Experiments on the stability of flow between rotating cylinders in the presence of a magnetic field.” Proc Roy Soc A 266 272–286 (1962).ADSMATHCrossRefGoogle Scholar
  21. 20.
    R.J. Donnelly and N.J. Simon “ An empirical torque relation for supercritical flow between rotating cylinders” J. Fluid Mechanics 7, 401–418 (1960).ADSMATHCrossRefGoogle Scholar
  22. 21.
    J.A. Cole, “Taylor-vortex instability and annulus-length effects,” J. Fluid Mech. 75, 1–15 (1976).ADSCrossRefGoogle Scholar
  23. 22.
    R.J. Donnelly and M.M. LaMar, “Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers,” Phys. Rev. A 36 4507 (1987).ADSCrossRefGoogle Scholar
  24. 23.
    R.J. Donnelly, D. Fultz, “Experiments on the stability of flow between rotating cylinders II. Visual observations.” Proc Roy Soc A 258 101–123 (1960).ADSMATHCrossRefGoogle Scholar
  25. 24.
    D.J. Baker, “A technique for the precise measurement of small fluid velocities” J. Fluid Mech. 26, 573–575 (1966).ADSCrossRefGoogle Scholar
  26. 25.
    K. Park, C.F. Barenghi, and R.J. Donnelly “Subharmonic destabilization of Taylor vortices near and oscillating cylinder ” Phys Lett 78A 152–154 (1980).CrossRefGoogle Scholar
  27. 26.
    R.J. Donnelly, “Experiments on the stability of flow between rotating cylinders IV. The ion technique.” Proc Roy Soc A 283 509–519 (1965).ADSCrossRefGoogle Scholar
  28. 27.
    R.J. Donnelly and D.J. Tanner, “Experiments on the stability of flow between rotating cylinders V. The theory of the ion technique.” Proc Roy Soc A 283 520–530 (1965).ADSCrossRefGoogle Scholar
  29. 28.
    R.J. Donnelly, K.W. Schwarz, “Experiments on the stability of viscous flow between rotating cylinders, VI. Finite-amplitude experiments.” Proc Roy Soc A 283, 531–546 (1965).ADSCrossRefGoogle Scholar
  30. 29.
    R.W. Walden, “Transition to turbulence in Couette flow between concentric cylinders ” PhD thesis, University of Oregon, (1978)Google Scholar
  31. 30.
    F. Schultz-Grunow and H. Hein, “Beitrag zur Couettestromung” Z. Fur Flugwissenschaften 4 28–30 (1956).Google Scholar
  32. 31.
    P. Matisse and M. Gorman, “Neutrally buoyant anisotropic particles for flow visualization,” Phys. Fluids 27, 759–760 (1984).ADSCrossRefGoogle Scholar
  33. 32.
    R.J. Donnelly, K. Park, R. Shaw and R.W. Walden, “Early non-periodic transitions in Couette flow” Phys Rev Lett 44 987–989 (1980).ADSCrossRefGoogle Scholar
  34. 33.
    G. Crawford, “Transitions in Taylor wavy-vortex flow” PhD thesis, University of Oregon, (1983).Google Scholar
  35. 34.
    Li Ning, G. Ahlers and D.S. Cannell “Wavenumber selection and travelling vortex waves in spatially ramped Taylor-Couette flow”, Phys Rev Lett (1991).Google Scholar
  36. 35.
    F. Durst, A. Melling and J.H. Whitelaw, Principles and practice of laser-doppler anemometry, Academic press, New York (1981)Google Scholar
  37. 36.
    D.C. Bjorkquist, “Particle image velocimetry for determining structures of turbulent flows.” Flow Lines (a publication of TSI Inc.) 6 3–8 (1991).Google Scholar
  38. 37.
    R.J. Donnelly, in A Physicist’s Desk Reference Ed. Herbert L. Anderson, AIP New York, 1989, p. 201.Google Scholar
  39. 38.
    R. J. Donnelly and D.R. Caldwell, “Experiments on the stability of hydromagnetic Couette flow” J. Fluid Mech. 19, 257–263 (1964).ADSMATHCrossRefGoogle Scholar
  40. 39.
    R.G. Wheeler, C.H. Blakewood and C.T. Lane, “Second sound attenuation in rotating helium II” Phys Rev 99, 1667–1672 (1955).ADSCrossRefGoogle Scholar
  41. 40.
    R.J. Donnelly, Quantized vortices in helium II, Cambridge University Press, Cambridge (1991).Google Scholar
  42. 41.
    R.J. Donnelly and Michelle M. LaMar, “Flow and Stability of Helium II Between Concentric Cylinders”, J. Fluid Mech. 186, 163–198 (1988).ADSCrossRefGoogle Scholar
  43. 42.
    R.J. Donnelly in Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Systems,ed. F.H. Busse and L. Kramer, Plenum Press, NY (1990).Google Scholar
  44. 43.
    R.J. Donnelly, “Experiments on the stability of viscous flow between rotating cylinders, III. Enhancement of stability by modulation.” Proc Roy Soc A 281, 130–139 (1964).ADSCrossRefGoogle Scholar
  45. 44.
    R.J. Wiener, P.W. Hammer, C.E. Swanson and R.J. Donnelly, “ Stability of Taylor-Couette flow subject to an external Coriolis force.” Phys. Rev. Lett. 64, 1115 (1990).ADSCrossRefGoogle Scholar
  46. 45.
    M.A. Dominguez-Lerma, D.S. Cannell and G. Ahlers, “Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow” Phys Rev A 34, 4956–4970, (1986).ADSCrossRefGoogle Scholar
  47. 46.
    Lî Ning, G. Ahlers and D.S. Cannell “ Wavenumber selection and ravelling vortex waves in spatially ramped Taylor-Couette flow” Phys Rev LettersGoogle Scholar
  48. 47.
    D. Coles, “Transition in circular Couette flow” J. Fluid Mech. 21, 385–425, (1965).ADSMATHCrossRefGoogle Scholar
  49. 48.
    H.A. Snyder “Change in wave-form and mean flow associated with wavelength variations in rotating Couette flow” J. Fluid Mech 35 337–352 (1969).ADSCrossRefGoogle Scholar
  50. 49.
    D.R. Caldwell and R.J. Donnelly, “On the reversibility of the transition past instability in Couette flow”, Proc. Roy. Soc A267 197–205 (1962).ADSMATHCrossRefGoogle Scholar
  51. 50.
    K. Park, G.L. Crawford and R.J. Donnelly “Determination of transition in Couette flow in finite geometries”, Phys Rev Lett 47, 1448–1450 (1981).ADSCrossRefGoogle Scholar
  52. 51.
    P.W. Hammer, R.J. Wiener, C.E. Swanson and R.J. Donnelly, “Bifurcation phenomena in nonaxisymmetric Taylor-Couette flow” (Phys Rev A15, in preparation, 1992 ).Google Scholar
  53. 52.
    M. Gorman and H.L. Swinney, “Visual observation of the second characteristic mode in a quasiperiodic flow”, Phys. Rev. Lett. 43, 1871 (1979)ADSCrossRefGoogle Scholar
  54. 53.
    O. Savas, “On flow visualization using reflective flakes”, J. Fluid Mech. 152, 235 (1985)ADSCrossRefGoogle Scholar
  55. 54.
    K. Schwarz, “Evidence for organized small-scale structure in fully developed turbulence”, Phys. Rev. Lett. 64, 415 (1990).ADSCrossRefGoogle Scholar
  56. 55.
    W.L. Ditto, M.L. Spano, H.T. Savage, S.N. Rauseo, J. Heagy and E. Ott “Experimental observation of a strange nonchaotic attractor”, Phys Rev Lett 65, 533–536 (1990).ADSCrossRefGoogle Scholar
  57. 56.
    J. Crutchfield, D. Farmer, N. Packard, R. Shaw, G. Jones and R.J. Donnelly “Power spectral analysis of a dynamical system”, Phys Lett 76A, 1–4 (1980).MathSciNetCrossRefGoogle Scholar
  58. 57.
    A. Brandstater and H.L. Swinney, “Strange attractors in weakly turbulent Couette-Taylor flow”, Phys Rev A35 2207–2220 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Russell J. Donnelly
    • 1
  1. 1.Department of PhysicsUniversity of OregonEugeneUSA

Personalised recommendations