Taurine pp 163-172 | Cite as

Intracellular Effects of Taurine: Studies on Skinned Cardiac Preparations

  • D. S. Steele
  • G. L. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 315)


Taurine (2-aminoethane sulphonic acid) is the most abundant amino acid in the heart and contributes approximately 50% of the total amino acid pool. The intracellular concentration of taurine is species dependent, commonly about 5–20 mM1. Intracellular levels are maintained despite a much lower plasma concentration of about 60 µ M2. The sarcoplasmic taurine concentration is linked to that of intracellular sodium suggesting the presence of sarcolemmal Na-taurine co-transport3,4. Elevated taurine levels have been found in heart tissue from patients with congestive heart failure and in experimental models of cardiac hypertrophy5 while the taurine content of the heart decreases as a consequence of ischemia6.


Fluorescence Ratio Taurine Content Spontaneous Oscillation Tension Transient Total Amino Acid Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Jacobson and J.R.L.H. Smith, Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424–511, 1968.Google Scholar
  2. 2.
    T.L. Perry and S. Hansen, Technical pitfalls leading to errors in the quantification of plasma amino acids, Clinica Chimica Acta 25:53, 1969.CrossRefGoogle Scholar
  3. 3.
    J. Bahl, C.J. Frangakis, B. Larsen, S. Cahng, D. Grosso, and R.A. Bressler, Accumulation of taurine by isolated rat heart cells and rat heart slices, in: “The Effects of Taurine on Excitable Tissues,” S.W. Schaffer, S.W. Baskin, and J. Kocsis, ed., Lancaster: Spectrum Publications Inc., 1981, p. 247–258.CrossRefGoogle Scholar
  4. 4.
    R. A. Chapman and M.S. Suleiman, Na-dependent taurine uptake in isolated bovine cardiac sarcolemmal vesicles, J. Physiol. 430:72P, 1991.Google Scholar
  5. 5.
    R. Huxtable and R. Bressler, Effect of taurine on a muscle intracellular membrane, Biochemica et Biophysica Acta 323:573, 1974.Google Scholar
  6. 6.
    M.F. Crass, and J.B. Lombardini, Loss of cardiac muscle taurine after left ventricular ischaemia, Life Sci. 21:951–958, 1977.CrossRefGoogle Scholar
  7. 7.
    J. Azuma, A. Sawamura, and N. Awata, Theraputic effect of taurine in conjestive heart failure; a double-blind cross-over trial, Clin. Cardiol. 8:276–282, 1985.CrossRefGoogle Scholar
  8. 8.
    M.J. McBroom and J.D. Welty, Effect of taurine on heart calcium in the cardiomopathic hamster, J. Mol. Cell. Cardiol. 9:853–859, 1977.CrossRefGoogle Scholar
  9. 9.
    J.H. Kramer, J.P. Chovan, and S.W. Schaffer, The effect of taurine on calcium paradox and ischaemic heart failure, Amer. J. Physiol. 240:H238–H246, 1981.Google Scholar
  10. 10.
    F. Franconi, I. Stenardi, and P. Failli, The protective effects of taurine on hypoxia and reoxygenation in guinea-pig heart, Biochem. Pharmacol. 34:2611–2615, 1985.CrossRefGoogle Scholar
  11. 11.
    H. Ohta, A. Junichi, N. Awata, Mechanism of the protective effect of taurine against isoprenaline induced myocardial damage, Cardiovas. Res. 22:407–413, 1988.CrossRefGoogle Scholar
  12. 12.
    F. Franconi, F. Martini, I. Stendardi, R. Matucci, L. Zilletti, and A. Giotti, Effect of taurine on calcium levels and contractility in guinea-pig ventricular strips, Biochem. Pharmacol. 31:3181–3185, 1982.CrossRefGoogle Scholar
  13. 13.
    J.P. Chovan, E.C. Kulakowski, S. Sheakowski, and S.W. Schaffer, Calcium regulation by the low-affmity taurine binding sites of cardiac sarcolemma, Mol. Pharmacol. 17:295–300, 1980.Google Scholar
  14. 14.
    J. Hernandez, S. Artillo, M.I. Serrano, and J.S. Serrano, Further evidence for the antiarrhythmic efficacy of taurine in the heart, Res. Commun. Chem. Pathol. Pharmacol. 43:343–346, 1984.Google Scholar
  15. 15.
    K. Takahashi, J. Azuma, N. Awata, Protective effect of taurine on the irregular beating pattern of cultured myocardial cells induced by high and low extracellular calcium ion, J. Mol. Cell. Cardiol. 20:397–403, 1988.CrossRefGoogle Scholar
  16. 16.
    T. Matsuda, T. Gemba, A. Baba, and H. Iwata, Inhibition by taurine of Na-Ca exchange in sarcolemmal membrane vesicles from bovine and guinea-pig hearts. Comp. Biochem. Physiol. 94C:335–339, 1989.Google Scholar
  17. 17.
    A. Sawamura, H. Sada, J. Azuma, S. Kishimoto, and N. Sperelakis, Taurine modulates ion influx through cardiac Ca2+ channels, Cell Calcium 11:251–259, 1990.CrossRefGoogle Scholar
  18. 18.
    F. Franconi, F. Bennardini, R. Matucci, Functional and binding evidence of taurine inhibition of alpha-adrenoceptor effects on guinea-pig ventricle, J. Mol. Cell. Cardiol. 18:461–468, 1986.CrossRefGoogle Scholar
  19. 19.
    J.D. Welty and C.M. Welty, Effects of taurine on subcellular calcium dynamics in normal and cardio myopathic hamster heart, in: “Effects of Taurine on Excitable Tissues,” S.W. Baskin, J. Kocsis, and S.W. Schaffer, eds., Lancaster: Spectrum Publications, 1991Google Scholar
  20. 20.
    M.L. Entman and B.P. Bornet, Effect of calcium on cardiac sarcoplasmic reticulum, Life Sci. 21:543–550, 1977.CrossRefGoogle Scholar
  21. 21.
    M.C. Quennedey, J. Velly, and J. Schwartz, [3H] Taurine binding on a cardiac sarcoplasmic fraction from rats, rabbits and pigs, Eur. J. Pharmacol. 38:73–76, 1986.CrossRefGoogle Scholar
  22. 22.
    D.S. Steele, G.L. Smith, and D.J. Miller, The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Cad+ sensitivity of chemically skinned rat heart, J. Physiol. 422:499–511, 1990.Google Scholar
  23. 23.
    D.J. Miller, G.L. Smith, and D.S. Steele, Taurine enhances sarcoplasmic reticulum function and myofilament calcium sensitivity in chemically skinned rat ventricular trabeculae, J. Physiol. 415:111–111, 1989.Google Scholar
  24. 24.
    G.L. Smith and D.J. Miller, Potentiometric measurements of stoichiometricand apparent affinity constants of EGTA for protons and divalent ions including calcium, Biochim. Biophy. Acta 839:287–299, 1985.CrossRefGoogle Scholar
  25. 25.
    A. Fabiato and F. Fabiato, Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells, J. Physiol. 75:463–505, 1979.Google Scholar
  26. 26.
    D.J. Miller and G.L. Smith, EGTA purity and the buffering of calcium ions in physiological solutions, Amer.J. Physiol. 246:C160–C166, 1984.Google Scholar
  27. 27.
    S.M. Harrison, C. Lamont, D.J. Miller, and D.S. Steele, Sulmazol (AR L 115BS) induces caffeine-like contractures in mammalian cardiac muscle selectively skinned with saponin. J. Physiol. 407:124–124, 1988.Google Scholar
  28. 28.
    A. Fabiato, Spontaneous versus triggered contractions of “calcium tolerant” cardiac cells from the adult rat ventricle, Basic Res. in Cardiol. 80:83–88, 1985.Google Scholar
  29. 29.
    C.J. Nieman and D.A. Eisner, Effects of caffeine, tetracaine and ryanodine on calcium-dependent oscillations in sheep cardiac purkinje fibers. J. Gen. Physiol. 86:877–889, 1985.CrossRefGoogle Scholar
  30. 30.
    B. Wetzel and N. Hanel, New cardiotonic agents-a promising approach for treatment of heart failure, TIPS 9:166–170, 1988.Google Scholar
  31. 31.
    I.R. Wendt and D.G. Stephenson, Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat, Pflugers. Archive. 398:210–216, 1983.CrossRefGoogle Scholar
  32. 32.
    R. Huxtable and L.A. Sebring, “Cardiovascular Actions of Taurine,” New York:Sulfur amino acids:Biochemical and Clinical Aspects, 1983. pp. 5–37.Google Scholar
  33. 33.
    S.W. Schaffer, S. Allo, H. Harada, and J. Azuma, “Regulation of Calcium Homeostasis by Taurine: Role of Calmodulin, Wiley-Liss Inc., New York, 1990. pp. 217–225.Google Scholar
  34. 34.
    S. Galler, C. Hutzler, and T. Haller, Effects of taurine on C2+ -dependent force development of skinned muscle fibre preparations, J. Exp. Biol. 152:255–264, 1990.Google Scholar
  35. 35.
    D.J. Miller, J. Campbell, J.J. O’Dowd, and D.J. Robins, Novel endogenous imidazoles calcium-sensitize chemically skinned rat heart muscle, J. Physiol. 427:54P, 1990.Google Scholar
  36. 36.
    R.J. Solaro, P. Bousquet, and J.D. Johnson, Stimulation of cardiac myofilament force,ATPase activity and troponin-C Ca2+ binding by Bepridil, J. Pharm. Exp. Ther. 238:502–507, 1986.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. S. Steele
    • 1
  • G. L. Smith
    • 1
  1. 1.Institute of PhysiologyGlasgow UniversityScotland

Personalised recommendations