Enzymatic Synthesis of Gallotannins and Related Compounds

  • Georg G. Gross
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 26)

Abstract

The onset of the 20th century marks the period when plant tannins, as many other natural products, became the subject of intense investigations aimed at the elucidation of their chemical structures, properties, and distribution in the Plant Kingdom. Among many researchers of that time, the name of E. Fischer deserves special attention as his eminent work provided fundamental, lasting insights into the constitution of Chinese and Turkish hydrolyzable tannins and their eventual biogenetic precursors. Although his work was continued by excellent scientists, such as K. Freudenberg and P. Kamer, the whole challenging field was increasingly ignored due to the growing insight that the then available analytical armament was insufficient to tackle the evidently tremendous complexity of these plant constituents. Fortunately, a renaissance in the 1950s can be recorded, starting with the outstanding investigations of O.Th. Schmidt and W. Mayer on ellagitannins, and continued by other research groups, mainly in England and Japan, such as the laboratories of E.C. Bate-Smith, T. Swain, E. Haslam, T. Okuda and I. Nishioka.

Keywords

Flavonoid Polyphenol Catechin Glucarate Polyol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haslam, E. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in higher plants. Fortschr. Chem. Org. Naturst. 41:1–46.CrossRefGoogle Scholar
  2. 2.
    Haslam, E. 1989. Gallic acid derivatives and hydrolyzable tannins. In: Natural Products of Woody Plants I. Chemicals extraneous to the lignocellulosic cell wall. (J.W. Rowe, ed.) Springer, Berlin, pp. 399–438.Google Scholar
  3. 3.
    Haslam, E. 1989. Plant polyphenols. Vegetable Tannins Revisited. Cambridge University Press, Cambridge, 230 pp..Google Scholar
  4. 4.
    Porter, L.J. 1989. Tannins. In: Methods in Plant Biochemistry. Vol. 1. Plant Phenolics. (J.B. Harborne, ed.) Academic Press, London, pp. 389–419.Google Scholar
  5. 5.
    Haslam, E. 1988. Twenty-second Procter Memorial lecture. Vegetable Tannins-renaissance and reappraisal. J. Soc. Leather Technol. Chem. 72:45–64.Google Scholar
  6. 6.
    Freudenberg, K. 1920. Die Chemie der Natürlichen Gerbstoffe. Springer, Berlin, 161 pp.Google Scholar
  7. 7.
    Nishizawa, M., Yamagishi, T., Nonaka, G., Nishioka, I. 1982. Tannins and related compounds. 5. Isolation and characterization of polygalloylglucoses from chinese gallotannin. J. Chem. Soc. Perkin Trans. 1:2963–2968.CrossRefGoogle Scholar
  8. 8.
    Nishizawa, M., Yamagishi, T., Nonaka, G., Nishioka, I. 1983. Tannins and related compounds. 9. Isolation and characterization of polygalloylglucoses from Turkish galls (Quercus infectoria). J. Chem. Soc. Perkin Trans. 1:961–965.CrossRefGoogle Scholar
  9. 9.
    Nishizawa, M., Yamagishi, T., Nonaka, T., Nishioka, I. 1980. Structure of gallotannins in Paeoniae radix. Chem. Pharm. Bull. 28:2850–2852.CrossRefGoogle Scholar
  10. 10.
    Nishizawa, M., Yamagishi, T., Nonaka, G., Nishioka, I., Nagasawa, T., Oura, H. 1983. Tannins and related compounds. XII. Isolation and characterization of galloylglucoses from Paeoniae radix and their effect on urea-nitrogen concentration in rat serum. Chem. Pharm. Bull. 31:2593–2600.PubMedCrossRefGoogle Scholar
  11. 11.
    Gross, G.G. 1985. Biosynthesis and metabolism of phenolic acids and monolignols. In: Biosynthesis and Biodegradation of Wood Components. (T. Higuchi, ed.) Academic Press, Orlando, pp. 229–271.Google Scholar
  12. 12.
    Zenk, M.H. 1964. Zur Frage der Biosynthese der Gallussäure. Z. Naturforsch. 19b:83–84.Google Scholar
  13. 13.
    Neish, A.C., Towers, G.H.N., Chen, D., El-Basyouni, S.Z., Ibrahim, R.K. 1964. The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492.CrossRefGoogle Scholar
  14. 14.
    Kato, N., Shiroya, M., Yoshida, S., Hasegawa, M. 1968. Biosynthesis of gallic acid by a homogenate from the leaves of Pelargonium inquinans. Bot. Mag. Tokyo 81:506–507.Google Scholar
  15. 15.
    Haslam, E., Haworth, R.D., Knowles, P.F. 1961. Gallotannins. IV. The biosynthesis of gallic acid. J. Chem. Soc. 1854–1859.Google Scholar
  16. 16.
    Conn, E.E., Swain, T. 1961. Biosynthesis of gallic acid in higher plants. Chem. Ind. 592–593.Google Scholar
  17. 17.
    Cornthwaite, D.C., Haslam, E. 1965. Gallotannins. IX. The biosynthesis of gallic acid in Rhus typhina. J. Chem. Soc. 3008–3011.Google Scholar
  18. 18.
    Tateoka, T.N. 1968. Formation of protocatechuic acid from dehydroshikimic acid in the extract of mung bean seedling. Bot. Tokyo 81:103–104.Google Scholar
  19. 19.
    Amrhein, N., Topp, H., Joop, O. 1984. The pathway of gallic acid biosynthesis in higher plants. Plant Physiol. 75s:18.Google Scholar
  20. 20.
    Lydon, J., Duke, S.O. 1988. Glyphosate induction of elevated levels in higher plants. J. Agric. Food Chem. 813–818.Google Scholar
  21. 21.
    Becerril, J.M., Duke, S.O., Lydon, J. Glyphosate effects on shikimate pathway products in leaves and flowers of velvetleaf. Phytochemistry 28:695–699.Google Scholar
  22. 22.
    Heide, L., Floss, H.G., Tabata, M. 1989. Incorporation of shikimic acid into p-hydroxybenzoic acid in Lithospermum erythrorhizon cell cultures. Phytochemistry 28:2643–2645.CrossRefGoogle Scholar
  23. 23.
    Sauo, R. 1983. Pathway of gallic acid biosynthesis and its esterfication with catechins in young tea shoots. Agric. Biol. Chem. 47:455–460.CrossRefGoogle Scholar
  24. 24.
    Ishikura, N. 1975. Incorporation rate of shikimic acid-14C and phenylalanine-14C into gallic acid in Rhus and Acer leaves. Experientia 31:1407–1408.CrossRefGoogle Scholar
  25. 25.
    Ishikura, N., Hayashida, S., Tazaki, K. 1984. Biosynthesis of gallic and ellagic acids with 14C-labeled compounds in Acer and Rhus leaves. Bot. Mag. Tokyo 97:355–367.CrossRefGoogle Scholar
  26. 26.
    Haddock, E.A., Gupta, R.K., Al-Shafi, S.R.K., Layden, K., Haslam, E., Magnolato, D. 1982. The metabolism of gallic acid and hexahydroxydiphenic acid in plants: biogenetic and molecular taxonomic considerations. Phytochemistry 21:1049–1062.CrossRefGoogle Scholar
  27. 27.
    Stöckigt, J., Zenk, M.H. 1974. Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme A and quinic acid. FEBS Lett. 42:131–134.PubMedCrossRefGoogle Scholar
  28. 28.
    Ulbrich, B., Zenk, M.H. 1979. Partial purification and properties of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase from higher plants. Phytochemistry 18:929–933.CrossRefGoogle Scholar
  29. 29.
    Rhodes, M.J.C., Wooltorton, L.S.C., Lourenço, E.J. 1979. Purification and properties of hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase from potatoes. Phytochemistry 18:1125–1129.CrossRefGoogle Scholar
  30. 30.
    Ulbrich, B., Zenk, M.H. 1980. Partial purification and properties of p-hydroxycinnamoyl-CoA: shikimate-p-hydroxycinnamoyl transferase from higher plants. Phytochemistry 19:1625–1629.CrossRefGoogle Scholar
  31. 31.
    Petersen, M., Alfermann, A.W. 1988. Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z. Naturforsch. 43c:501–504.Google Scholar
  32. 32.
    Strack, D., Ruhoff, R., Grwe, W. 1986. Hydroxycinnamoylcoenzyme A: tartronate hydroxycinnamoyltransferase in protein preparations from mung bean. Phytochemistry 25:833–837.CrossRefGoogle Scholar
  33. 33.
    Strack, D., Leicht, P., Bokern, M, Wray, V., Grotjahn, L. 1987. Hydroxycinnamic acid esters of isocitric acid: accumulation and enzymatic synthesis in Amaranthus cruentus. Phytochemistry 26:2919–2922.CrossRefGoogle Scholar
  34. 34.
    Strack, D., Keller, H., Weissenböck, G. 1987. Enzymatic synthesis of hydroxycinnamic acid esters of sugar acids and hydroaromatic acids by protein preparations from rye (Secale cereale) primary leaves. J. Plant Physiol. 131:61–73.CrossRefGoogle Scholar
  35. 35.
    Heilemann, J., Wray, V., Strack, D. 1990. Synthesis of 2-O-(4coumaroyl)-myo-inositol by a protein preparation from needles of Taxus baccata. Phytochemistry 29:3487–3489.CrossRefGoogle Scholar
  36. 36.
    Saylor, M.H., Mansell, R.L. 1977. Hydroxycinnamoyl-coenzyme A transferase involved in the biosynthesis of kaempferol 3-(p-coumaroyl triglucoside) in Pisum sativum. Z. Naturforsch. 32c:765–768.Google Scholar
  37. 37.
    Teusch, M., Forkkmann, G., Seyffert, W. 1987. Genetic control of hydroxycinnamoyl-coenzyme A: anthocyanidin 3-glycoside hydroxycinnamoyltransferase from petals of Matthiola incana. Phytochemistry 26:991–994.CrossRefGoogle Scholar
  38. 38.
    Gross, G.G. 1982. Synthesis of galloyl-coenzyme A thioester. Z. Naturforsch. 37c:778–783.Google Scholar
  39. 39.
    Gross, G.G. 1983. Synthesis of mono-, di-and trigalloyl-β-D-glucose by β-glucogallin-dependent galloyltransferase from oak leaves. Z. Naturforsch. 38c:519–523.Google Scholar
  40. 40.
    Gross, G.G. 1982. Synthesis of β-glucogallin from UDP-glucose and gallic acid by an enzyme preparation from oak leaves. FEBS Lett. 148:67–70.CrossRefGoogle Scholar
  41. 41.
    Gross, G.G. 1983. Partial purification and properties of UDPglucose:vanillate 1-O-glucosyl transferase from oak leaves. Phytochemistry 22:2179–2182.CrossRefGoogle Scholar
  42. 42.
    Weisemann, S., Denzel, K., Schilling, G., Gross, G.G. 1988. Enzymatic synthesis of 1-O-phenylcarboxyl-β-D-glucose esters. Bioorg. Chem. 16:29–37.CrossRefGoogle Scholar
  43. 43.
    Corner, J.J., Swain, T. 1965. Enzymatic synthesis of the sugar esters of hydroxy-aromatic acids. Nature 207:634–635.PubMedCrossRefGoogle Scholar
  44. 44.
    Macheix, J.J. 1977. Biosynthèse des esters glucosés des acides hydroxy-cinnamique à partir d’uridine diphospho-glucose et des acides libres chez la pomme. C. R. Acad. Sci. Ser. D. 284:33–36.Google Scholar
  45. 45.
    Fleuriet, A., Macheix, J.J., Suen, R., Ibrahim, R.K. 1980. Partial purification and some properties of a hydroxycinnamoyl glucosyltransferase from tomato fruits. Z. Naturforsch. 35c:967–972.Google Scholar
  46. 46.
    Strack, D. 1980. Enzymatic synthesis of 1-sinapoylglucose from free sinapic acid and UDP-glucose by a cell-free system from Raphanus sativus seedling. Z. Naturforsch. 35c:204–208.Google Scholar
  47. 47.
    Nurmann, G., Strack, D. 1981. Formation of 1-sinapoylglucose by UDP:glucose: sinapic acid glucosyltransferase from cotyledons of Raphanus sativus. Z. Pflanzenphysiol. 102:11–17.Google Scholar
  48. 48.
    Nagels, L., Molderez, M., Parmentier, F. 1981. UDPG-p-coumarate glucosyltransferase activity in enzyme extracts from higher plant. Phytochemistry 20:965–967.CrossRefGoogle Scholar
  49. 49.
    Shimizu, T., Kojima, M. 1984. Partial purification and characterization of UDPG: t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam. J. Biochem. 95:205–212.PubMedGoogle Scholar
  50. 50.
    Michalzuk, L., Bandurski, R.S. 1980. UDP-glucose: indoleacetic acid glucosyl transferase and indoleacetyl-glucose: myo-inositol indoleacetyl transferase. Biochem. Biophys. Res. Commun. 93:588–592.Google Scholar
  51. 51.
    Bäumker, P.A., Jütte, M., Wiermann, R. 1987. The separation of two different enzymes catalyzing the formation of hydroxycinnamic acid glucosides and esters. Z. Naturforsch. 42c:1223–1230.Google Scholar
  52. 52.
    Gross, G.G. Enzymology of gallotannin biosynthesis. 1989. In: Plant cell wall polymers: biogenesis and biodegradation. (N.G. Lewis, M.G. Paice, eds.) ACS Symp. Ser. 399:108–121.CrossRefGoogle Scholar
  53. 53.
    Atkinson, M.L., Morton, R.K. 1960. Free energy and the biosynthesis of phosphates. In: Comparative Biochemistry. Vol. II. Free energy and biological function. (M. Florkin, H.S. Mason, eds.) Academic Press, New York- London, pp. 1–95.Google Scholar
  54. 54.
    Strack, D., Knogge, W., Dahlbender, B. 1983. Enzymatic synthesis of sinapine from 1-O-sinapoyl-β-D-glucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L. var. sativus). Z. Naturforsch. 38c:21–27.Google Scholar
  55. 55.
    Regenbrecht, J., Strack, D. 1985. Distribution of 1-sinapoylglucose: choline sinapoyltransferase activity in the Brassicaceae. Phytochemistry 24:407–410.CrossRefGoogle Scholar
  56. 56.
    Tkotz, N., Strack, D. 1980. Enzymatic synthesis of sinapoyl-L-malate from 1-sinapoylglucose and L-malate by a protein preparation from Raphanus sativus cotyledons. Z. Naturforsch. 35c:835–837.Google Scholar
  57. 57.
    Strack, D. 1982. Development of 1-O-sinapoyl-β-D-glucose L-malate sinapoyltransferase activity in cotyledons of red radish (Raphanus sativus L. var. sativus). Planta 155:31–36.CrossRefGoogle Scholar
  58. 58.
    Strack, D., Heilermann, J., Boehnert, B., Grotjahn, L., Wray, V. 1987. Accumulation and enzymatic synthesis of 2-O-acety1–3-O-(p-coumaroyl)-meso-tartaric acid in spinach cotyledons. Phytochemistry 26:107–111.CrossRefGoogle Scholar
  59. 59.
    Strack, D., Gross, W., Heilermann, J., Keller, H., Ohm, S. 1988. Enzymic synthesis of hydroxycinnamic acid esters of glucaric acid and hydroaromatic acids from the respective 1-O-hydroxycinnamoylglucoside and hydroxycinnamoyl-coenzyme A thioester as acyl donors with a protein preparation from Cestrum elegans leaves. Z. Naturforsch. 43c:32–36.Google Scholar
  60. 60.
    Bokern, M., Strack, D. 1988. Synthesis of hydroxycinnamic acid esters of betacyanins via 1-O-acylglucosides of hydroxycinnamic acids by protein preparations from cell suspension cultures of Chenopodium rubrum and petals of Lampranthus sociorum. Planta 174:101–105.CrossRefGoogle Scholar
  61. 61.
    Michalzuk, L., Bandurski, R.S. 1982. Enzymic synthesis of 1-O-indol-3-ylacety1-β-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem. J. 207:273–281.Google Scholar
  62. 62.
    Kesy, J.M., Bandurski, R.S. 1990. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3ylacetyltransferase (indoleacetic acid-inositol synthase). Plant Physiol. 94:1598–1604.PubMedCrossRefGoogle Scholar
  63. 63.
    Villegas, R.J.A., Kojima, M. 1986. Purification and characterization of hydroxycinnamoyl D-glucose quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas. Lam. J. Biol. Chem. 261:8729–8733.Google Scholar
  64. 64.
    Strack, D., Gross, W., Wray, V., Grotjahn, L. 1987. Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol. 83:475–478.PubMedCrossRefGoogle Scholar
  65. 65.
    Strack, D., Gross, W. 1990. Properties and activity changes of chlorogenic acid: glucaric acid caffeoyltransferase from tomato (Lycopersicon esculentum). Plant Physiol. 92:41–47.PubMedCrossRefGoogle Scholar
  66. 66.
    Gross, G.G., Schmidt, S.W., Denzel, K. 1986. β-Glucogallindependent acyltransferase from oak leaves. I. Partial purification and characterization. J. Plant Physiol. 126:173–179.CrossRefGoogle Scholar
  67. 67.
    Denzel, K., Weisemann, S., Gross, G.G. 1988. β-Glucogallindependent acyltransferase from oak leaves. II. Application for the synthesis of 1-O-phenylcarboxyl-β-D-[14C] glucose esters. J. Plant Physiol. 133:113–115.CrossRefGoogle Scholar
  68. 68.
    Schmidt, S.W., Denzel, K., Schilling, G., Gross, G.G. 1987. Enzymatic synthesis of 1,6-digalloylglucose from β-glucogallin by β-glucogallin 6-O-galloyltransferase from oak leaves. Z. Naturforsch. 42c:87–92.Google Scholar
  69. 69.
    Gross, G.G., Denzel, K., Schilling, G.G. 1990. Enzymatic synthesis of di-O-phenylcarboxyl-β-D-glucose esters by an acyltransferase from oak leaves. Z. Naturforsch. 45c:37–41.Google Scholar
  70. 70.
    Dahlbender, B., Strack, D. 1984. Enzymatic synthesis of 1,2disinapoylglucose from 1-sinapoylglucose by a protein preparation from cotyledons of Raphanus sativus grown in the dark. J. Plant Physiol. 116:375–379.CrossRefGoogle Scholar
  71. 71.
    Dahlbender, B., Strack, D. 1986. Purification and properties of 1-(hydroxycinnamoyl)-glucose: hydroxy-cinnamoyltransferase from radish seedlings. Phytochemistry 25:1043–1046.CrossRefGoogle Scholar
  72. 72.
    Kojima, M., Kondo, T. 1985. An enzyme in sweet potato root which catalyzes the conversion of chlorogenic acid, 3-caffeoylquinic acid, to isochlorogenic acid, 3,5-di-caffeoylquinic acid. Agric. Biol. Chem. 49:2467–2469.CrossRefGoogle Scholar
  73. 73.
    Villegas, R.J.A., Shimokawa, T., Okuyama, H., Kojima, M. 1987. Purification and characterization of chlorogenic acid: chlorogenate caffeoyl transferase in sweet potato roots. Phytochemistry 26:1577–1581.CrossRefGoogle Scholar
  74. 74.
    Denzel, K., Schilling, G., Gross, G.G. 1988. Biosynthesis of gallotannins. Enzymatic conversion of 1,6-digalloylglucose to 1,2,6-trigalloylglucose. Planta 176:135–137.CrossRefGoogle Scholar
  75. 75.
    Gross, G.G., Denzel, K. 1991. Biosynthesis of gallotannins. β-Glucogallin-dependent galloylation of 1,6-digalloyl-glucose to 1,2,6-trigalloylglucose. Z. Naturforsch. 46c:389–394.Google Scholar
  76. 76.
    Cammann, J., Denzel, K., Schilling, G., Gross, G.G. 1989. Biosynthesis of gallotannins: β-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose. Arch. Biochem. Biophys. 273:58–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Krajci, I., Gross, G.G. 1987. Formation of gallotannins in callus cultures from oak (Quercus robur). Phytochemistry 26:141–143.CrossRefGoogle Scholar
  78. 78.
    Denzel, K., Gross, G.G. 1991. Biosynthesis of gallotannins. Enzymatic ‘disproportionation’ of 1,6-digalloylglucose to 1,2,6-trigalloylglucose and 6-galloylglucose by an acyltransferase from leaves of Rhus typhina L. Planta 184:285–289.CrossRefGoogle Scholar
  79. 79.
    Williams, J.M., Richardson, A.C. 1967. Selective acylation of pyranosides. I. Benzoylation of methyl β-D-glycopyranosides of mannose, glucose and galactose. Tetrahedron 23:1369–1378.CrossRefGoogle Scholar
  80. 80.
    Reinefeld, E., Ahrens, D. 1971. Einfluss der Konfiguration auf die partielle Veresterung von D-Glucopyranosiden. Liebigs Ann. Chem. 747:39–44.CrossRefGoogle Scholar
  81. 81.
    Hofmann, A.S., Gross, G.G. 1990. Biosynthesis of gallotannins: Formation of polygalloylglucoses by enzymatic acylation of 1,2,3,4,6-penta-O-galloylglucose. Arch. Biochem. Biophys. 283:530–532.PubMedCrossRefGoogle Scholar
  82. 82.
    Mayer, S., Hoffmann, E.H., Lösch, N., Wolf, H., Wolter, B., Schilling, G. 1984. Dehydrierungsreaktionen mit Gallussäureestern. Liebigs. Ann. Chem. 929–938.Google Scholar
  83. 83.
    Hathaway, D.E. 1957. The transformation of gallates into ellagate. Bichem. J. 67:445–450.Google Scholar
  84. 84.
    Kamel, M.Y., Saleh, N.A., Ghazy, A.M. 1977. Gallic acid oxidation by turnip peroxidase. Phytochemistry 16: 521–524.CrossRefGoogle Scholar
  85. 85.
    Pospíšil, F., Cvikrová, M. Hrubcová, M. 1983. Oxidation of gallic acid by an enzyme preparation isolated from the culture medium of Nicotiana tabacum cell suspension. Biol. Plantarum 25:373–377.CrossRefGoogle Scholar
  86. 86.
    Flaig, W., Haider, K. 1961. Reaktionen mit oxydierenden Enzymen aus Mikroorganismen. Planta Med. 9:123–139.CrossRefGoogle Scholar
  87. 87.
    Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fujita, Y., Yasuhara, T., Yoshida, T., Okuda, T. 1989. Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37:2016–2021.CrossRefGoogle Scholar
  88. 88.
    Stafford, H.A. 1981. Compartmentation in natural product biosynthesis by multienzyme complexes. In: The Biochemistry of Plants. Vol. 7. Secondary plant products. (E.E. Conn, ed.) Academic Press, New York, pp. 117–137.Google Scholar
  89. 89.
    Hrazdina, G., Wagner, G.J. 1985. Compartmentation of plant phenolic compounds; sites of synthesis and accumulation. In: The Biochemistry of Plant Phenolics. (C.F. van Sumere, P.J. Lea, eds.) Ann. Proc. Phytochem. Soc. Europe 25:119–133.Google Scholar
  90. 90.
    Boudet, A.M., Graziana, A., Ranjeva; R. 1985. Recent advances in the regulation of prearomatic pathways. In: The Biochemistry of Plant Phenolics. (C.F. van Sumere, P.J. Lea, eds.) Ann. Proc. Phytochem. Soc. Europe 25:135–159.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Georg G. Gross
    • 1
  1. 1.Universität Ulm, Abteilung Allgemeine BotanikUlmGermany

Personalised recommendations