Skip to main content

Structural Constraints on Residue Substitution

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 14))

Abstract

Protein sequences are clearly grouped into families related by evolution. Divergence of protein sequences proceeds by random mutation at the gene level and natural selection at the level of protein structure and function. It is well established that the protein folding “code” is highly degenerate, in that many different sequences (for example, less than 20% identical) can adopt the same general fold. However, on analysis of homologous sequences it is found that most families have distinct, conserved, “sequence fingerprints” that define their tertiary fold. Much recent work has attempted to identify these “determinants” of a fold, either by analysis of sets of aligned sequences or three-dimensional structures, or through mutagenesis experiments. These sources of information are highly complementary, and can be used together to model and predict the effects of local mutations, or to predict the fold of a protein of unknown structure. This chapter attempts to highlight some of the important features of protein structure, as identified by analysis of naturally observed substitutions in families of related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, W.R. (1986) J. Theor. Biol. 119, 205–218.

    Article  PubMed  CAS  Google Scholar 

  2. Chothia, C. and Lesk, A.M. (1986) EMBO J. 5, 823–826.

    PubMed  CAS  Google Scholar 

  3. Hubbard, T.J.P. and Blundell, T.L. (1987) Prot. Eng. 1, 159–171.

    Article  CAS  Google Scholar 

  4. Lim, W.A. and Sauer R.T. (1989) Nature 339, 31–36.

    Article  PubMed  CAS  Google Scholar 

  5. Singh, J. and Thornton, J.M. (1990) J. Mol. Biol. 211, 595–615.

    Article  PubMed  CAS  Google Scholar 

  6. Bajaj, M. and Blundell, T.L. (1984) Annu. Rev. Biophys. Bioeng. 13, 453–492.

    Article  PubMed  CAS  Google Scholar 

  7. Pearl, L. and Blundell, T.L. (1984) FEBS Lett. 174, 96–101.

    Article  PubMed  CAS  Google Scholar 

  8. Chou, P.Y. and Fasman, G.D. (1974) Biochemistry 13, 211–222.

    Article  PubMed  CAS  Google Scholar 

  9. Levitt, M. (1978) Biochemistry 17, 4277–4285.

    Article  PubMed  CAS  Google Scholar 

  10. Sibanda, B.L., Blundell, T.L. and Thornton, J.M. (1989) J. Mol. Biol. 206, 759–777.

    Article  PubMed  CAS  Google Scholar 

  11. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B. Meyer, E.F. Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  12. Overington, J.P., Donnelly, D., Johnson, M.S., Sali, A. and Blundell, T.L. (1992) Protein Science 1 (in press).

    Google Scholar 

  13. Sali, A. and Blundell, T.L. (1990) J. Mol. Biol. 212, 403–428.

    Article  PubMed  CAS  Google Scholar 

  14. Kabsch, W. and Sander, C. (1983) Biopolymers 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, B. and Richards, F.M. (1971) J. Mol. Biol. 55, 379–400.

    Article  PubMed  CAS  Google Scholar 

  16. Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys, Mol. Biol. 44, 97–139.

    Article  CAS  Google Scholar 

  17. Dayhoff, M.O., Barker, W.C. and Hunt, L.T. (1983) Methods Enzymol. 91, 524–545.

    Article  PubMed  CAS  Google Scholar 

  18. Argos, P. (1987) J. Mol. Biol. 193, 385–396.

    Article  PubMed  CAS  Google Scholar 

  19. Overington, J.P., Johnson, M.S., Sali. A. and Blundell, T.L. (1990) Proc. Roy. Soc. Lond. 241, 132–145.

    Article  CAS  Google Scholar 

  20. Eck, R.V. and Dayhoff, M.O. (1969) in Atlas of Protein Sequence and Structure (Dayhoff, M.O., ed.) p. 33, National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  21. McLachlan, A.D. (1971) J. Mol. Biol. 6, 409–424.

    Article  Google Scholar 

  22. Risler, J.L., Delorme, M.O., Delacroix, H. and Henaut, A. (1988) J. Mol. Biol. 204, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  23. Ponder, J.W. and Richards, F.M. (1987) J. Mol. Biol. 193, 775–791.

    Article  PubMed  CAS  Google Scholar 

  24. Chothia, C., Lesk, A.M., Levitt, M., Amit, A.G., Mariuzza, R.A., Phillips, S.E.V. and Poljak, R.J. (1986) Science 233, 755–758.

    Article  PubMed  CAS  Google Scholar 

  25. Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D. Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. and Poljak, R.J. (1989) Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  26. Bowie, J.U., Lütthy, R. and Eisenberg, D. (1991) Science 253, 164–170.

    Article  PubMed  CAS  Google Scholar 

  27. Benner, S.A. and Gerloff, D. (1991) Adv. Enzym. Reg. 31, 121–181.

    Article  CAS  Google Scholar 

  28. Donnelly, D. and Overington, J. (1992) (unpublished data).

    Google Scholar 

  29. Eisenberg, D., Weiss, R.M. and Terwilliger, T.D. (1984) Nature 299, 371–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Overington, J. (1992). Structural Constraints on Residue Substitution. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3424-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3424-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6514-3

  • Online ISBN: 978-1-4615-3424-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics