Advertisement

A Classification of Quadratic Algorithms for Multiplying Polynomials of Small Degree Over Finite Fields

  • Amir Averbuch
  • Nader H. Bshouty
  • Michael Kaminski

Abstract

It is shown that any quadratic optimal algorithm for computing the product of two degree-n polynomials over the q-element field, where n≤q, is based on the Chinese Remainder Theorem, with linear and quadratic polynomials presented as the moduli.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Averbuch, Z. Galil, S. Winograd, <Q(u)l >, l >1, Theoret. Comput. Sci. 58 (1988), 17–56.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    N.H. Bshouty, M. Kaminski, Multiplication of polynomials over finite fields, SIAM J. Comput. 19 (1990), 452–456.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, J. Complex. 4 (1988), 285–3MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    E. Feig On Systems of Bilinear Forms Whose Minimal Division-Free Algorithms Are All Bilinear J. Algor. 2 (1981), 261–28MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Feig, Certain Systems of Bilinear Forms Whose Minimal Algorithms Are All Quadratic, J. Algor. 4 (1983), 137–149.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. Kaminski, N.H. Bshouty, Multiplicative complexity of polynomial multiplication over finite fields, J. ACM 36 (1989), 150–170.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    A. Karustsuba, Y. Ofman, Multiplication of Multidigit Numbers on Automata, Dokl. Akad. Nauk SSSR 145, (1962), 293–294 (in Russian).Google Scholar
  8. [8]
    S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965.MATHGoogle Scholar
  9. [9]
    A. Lempel G. Seroussi S. Wigrad On the Complexity of Multiplication in Finite Fields Theoret. Comput. Sci. 22 (1983), 285–29MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, G.-C. Rota, ed., Addison-Wesley, Reading, Massachusetts, 1983.Google Scholar
  11. [11]
    R. Moenck, A. Borodin, Fast modular transforms via divisions, in “Proc. 13th Ann. Symp. on Switching and Automata Theory”, pp. 90–96, The Institute of Electrical and Electronic Engineers, New York, 197CrossRefGoogle Scholar
  12. [12]
    A.L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet Math. Docl. 4 (1963), 714–716.Google Scholar
  13. [13]
    S. Winograd, Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field Constants, Math. System Theory 10 (1976/77), 169–180.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Amir Averbuch
    • 1
  • Nader H. Bshouty
    • 2
  • Michael Kaminski
    • 3
  1. 1.Department of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  3. 3.Department of Computer ScienceTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations