A Classification of Quadratic Algorithms for Multiplying Polynomials of Small Degree Over Finite Fields

  • Amir Averbuch
  • Nader H. Bshouty
  • Michael Kaminski


It is shown that any quadratic optimal algorithm for computing the product of two degree-n polynomials over the q-element field, where n≤q, is based on the Chinese Remainder Theorem, with linear and quadratic polynomials presented as the moduli.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Averbuch, Z. Galil, S. Winograd, <Q(u)l >, l >1, Theoret. Comput. Sci. 58 (1988), 17–56.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    N.H. Bshouty, M. Kaminski, Multiplication of polynomials over finite fields, SIAM J. Comput. 19 (1990), 452–456.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, J. Complex. 4 (1988), 285–3MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    E. Feig On Systems of Bilinear Forms Whose Minimal Division-Free Algorithms Are All Bilinear J. Algor. 2 (1981), 261–28MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Feig, Certain Systems of Bilinear Forms Whose Minimal Algorithms Are All Quadratic, J. Algor. 4 (1983), 137–149.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    M. Kaminski, N.H. Bshouty, Multiplicative complexity of polynomial multiplication over finite fields, J. ACM 36 (1989), 150–170.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    A. Karustsuba, Y. Ofman, Multiplication of Multidigit Numbers on Automata, Dokl. Akad. Nauk SSSR 145, (1962), 293–294 (in Russian).Google Scholar
  8. [8]
    S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965.MATHGoogle Scholar
  9. [9]
    A. Lempel G. Seroussi S. Wigrad On the Complexity of Multiplication in Finite Fields Theoret. Comput. Sci. 22 (1983), 285–29MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20, G.-C. Rota, ed., Addison-Wesley, Reading, Massachusetts, 1983.Google Scholar
  11. [11]
    R. Moenck, A. Borodin, Fast modular transforms via divisions, in “Proc. 13th Ann. Symp. on Switching and Automata Theory”, pp. 90–96, The Institute of Electrical and Electronic Engineers, New York, 197CrossRefGoogle Scholar
  12. [12]
    A.L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet Math. Docl. 4 (1963), 714–716.Google Scholar
  13. [13]
    S. Winograd, Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field Constants, Math. System Theory 10 (1976/77), 169–180.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Amir Averbuch
    • 1
  • Nader H. Bshouty
    • 2
  • Michael Kaminski
    • 3
  1. 1.Department of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  3. 3.Department of Computer ScienceTechnion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations