Oxygen Plasma Treatment of Fluorinated Polyimide: An X-Ray Photoelectron Spectroscopy Study

  • Naresh C. Saha
  • Li-Hsin Chang


The oxygen plasma induced surface modifications of a fluorinated and conventional polyimide were studied by X-ray Photoelectron Spectroscopy. The interaction between polyimides and oxygen plasma resulted in the formation of carbonyl (>C=O) and carboxylic acid (-COOH) sites in both types of polyimides. In the fluorinated polyimide, -CF3 containing polymeric residues were also detected. The plasma induced residues were loosely bound to the polyimide surface and could be removed by vacuum annealing of the plasma treated surfaces restoring the as-cured polyimide surface chemistry in both types of polyimides. The mechanism of interaction of oxygen plasma with both polyimides leading to the observed surface modifications is discussed.


Oxygen Plasma Vacuum Annealing Oxygen Plasma Treatment Spectral Subtraction Plasma Treated Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Baranski and J. H. Nevin, J. Electronic Mater, 16, 39 (1987).CrossRefGoogle Scholar
  2. 2.
    R. Flitsch and D. Y. Shih, J. Vac. Sci. Technol., A8., 2376 (1990).Google Scholar
  3. 3.
    M. J. Vasile and B. J. Bachman, J. Vac. Sci. Technol., A7, 2992 (1989).Google Scholar
  4. 4.
    R. G. Nuzzo, Y. R. Wong and G. P. Schwartz, Langmuir, 3, 1136 (1987).CrossRefGoogle Scholar
  5. 5.
    S. Contarini, J. A. Schultz, S. Tachi, Y. S. Jo and J. W. Rabalais, Appl. Surface Sci., 28, 291 (1987).CrossRefGoogle Scholar
  6. 6.
    L. P. Buchwalter and A. I. Baise, in “Polyimides: Synthesis, Characterization and Applications”, K. L. Mittal, editor, Vol, 1 p. 537, Plenum, New York, (1984).Google Scholar
  7. 7.
    S. A. Chambers, V. A. Loebs and K. K. Chakravorty, J. Vac. Sci. Technol., A.8., 875 (1990).Google Scholar
  8. 8.
    W. E. Vanderlinde and A. L. Ruoff, J. Vac. Sci. Technol., B6, 1621 (1988).Google Scholar
  9. 9.
    P. S. Ho, Appl. Surface Sci., 41, 559 (1989) and references therein.CrossRefGoogle Scholar
  10. 10.
    C. Chang, Y. Kim and A. G. Schrott, J. Vac. Sci. Technol., A8., 3304 (1990).Google Scholar
  11. 11.
    X-ray photoelectron spectroscopy manual, Perkin Elmer, 1990.Google Scholar
  12. 12.
    D. Briggs, Appl. Surface Sci., 6, 188 (1980).CrossRefGoogle Scholar
  13. 13.
    D. T. Clark and A. Dilks, J. Polym. Sci., Polym. Chern. Ed., 17, 957, (1979)CrossRefGoogle Scholar
  14. 14.
    D. T. Clark, W. J. Feast, D. Kilcast and W. K. R. Musgrave, J. Polym.Sci., 11, 389 (1973).Google Scholar
  15. 15.
    L. P. Buchwalter, B. D. Silverman and A. R. Rossi, J. Vac. Sci. Technol., A5, 226 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Naresh C. Saha
    • 1
  • Li-Hsin Chang
    • 1
  1. 1.Advanced Custom Technology Center, Motorola Inc.MesaUSA

Personalised recommendations