Nuclear Magnetic Resonance Spectroscopy and the Study of Tissue Oxygen Metabolism: A Review

  • Robert Vink
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 316)


Nuclear magnetic resonance (NMR) techniques are being increasingly utilised as an in vivo method to monitor tissue oxygen concentration in various organs. In muscle and heart, proton NMR spectroscopy of myoglobin has been used to calculate local oxygen tension through the oxygen sensitivity of the histidine group signal intensity. Similarly, spin lattice relaxation times of perfluorocarbon emulsions are oxygen sensitive, and this property has been taken advantage of to produce oxygen maps of brain by fluorine NMR imaging. Phosphorus NMR spectroscopy has also been extensively used to monitor bioenergetic state, which under some conditions, is directly related to tissue oxygen tension. This review will focus on these NMR techniques for oxygen determination, and will critically assess their utility for further studies.


Oxygen Tension Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Tissue Oxygen Tension Proton Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Rakusan, Oxygen in the Heart Muscle, Thomas, Springfield (1971).Google Scholar
  2. 2.
    M. Tamura, N. Oshino, B. Chance, and A.I. Silver, Arch. Biochem. Biophys. 191:8 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    R.S.C. Cobbold, in Transducers for Biomedical Measurements: Principles and Applications, pp 380–398, Wiley, New York (1974).Google Scholar
  4. 4.
    B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, Anal. Biochem. 174:698 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    G.K. Radda and D.J. Taylor, Int. Rev. Exp. Path. 27:1 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    S.M. Cohen (ed), Physiological NMR Spectroscopy: From Isolated Cells to Man, Ann. N.Y. Acad. Sci. 508 (1987).Google Scholar
  7. 7.
    D.G. Gadian, Nuclear Magnetic Resonance and Its Applications to Living Systems, Clarendon Press, Oxford (1982).Google Scholar
  8. 8.
    T.L. James and A.R. Margulis (eds), Biomedical Magnetic Resonance, Radiology Research and Education Foundation, San Francisco (1984).Google Scholar
  9. 9.
    D.J. Livingston, G.N. LaMar, and W.D. Brown, Science 220:71 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Jue, and S. Anderson, Magn. Reson. Med. 13:524 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    Z. Wang, E.A. Noyszewski, and J.S. Leigh, Magn. Reson. Med. 14:562 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    H.P. Hetherington, M.J. Avison, and R.G. Shulman, Proc. Natl. Acad. Sci. U.S.A. 82:3115 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    T. Jue, Y. Chung, and R.G. Shulman, Abstr. Soc. Magn. Res. Med. 1:276 (1987).Google Scholar
  14. 14.
    S.F. Akber, Eur. J. Radiol. 9:56 (1989).PubMedGoogle Scholar
  15. 15.
    S. Ogawa, T.-M. Lee, A.S. Nayak, and P. Glynn, Magn. Reson. Med. 14:68 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Grant, B. Condon, S. Moyns, J. Patterson, and G. Teasdale, Magn. Reson. Med. 6:397 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Taylor, and C. Deutsch, Biophys. J. 53:227 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    D. Eidelberg, G. Johnson, D. Barnes, P.S. Tofts, D. Delpy, D. Plummer, and W.I. McDonald, Magn. Reson. Med. 6:344 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Eidelberg, G. Johnson, P.S. Tofts, J. Dobbin, H.A. Crockard, and D. Plummer, J. Cereb. Blood Flow. Metab. 8:276 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    J.E. Fishman, P.M. Joseph, M.J. Carvlin, M. Saadi-Elmandjra, B. Mukherji, and H.A. Sloviter, Invest. Radiol. 24:65 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Chance, S. Eleff, and J.S. Leigh, Proc. Natl. Acad. Sci. U.S.A. 74:7430 (1980).CrossRefGoogle Scholar
  22. 22.
    L. Gyulai, Z. Roth, J.S. Leigh, and B. Chance, J. Biol. Chem. 260:3947 (1985).PubMedGoogle Scholar
  23. 23.
    B. Chance, J.S. Leigh, J. Kent, and K. McCully, Fed. Proc. 45:2915–2920 (1986).PubMedGoogle Scholar
  24. 24.
    B. Chance, J.S. Leigh, S. Nioka, T. Sinwell, D. Younkin, and D.S. Smith, Ann. N.Y. Acad. Sci. 508:309 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Vink, T.K. McIntosh, P. Demediuk, M.W. Weiner, and A.I. Faden, J. Biol. Chem. 263:757 (1988).PubMedGoogle Scholar
  26. 26.
    R. Vink, A.I. Faden, and T.K. McIntosh, J. Neurotrauma 5:315 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    B. Chance, J.S. Leigh, and S. Nioka, Abst. Soc. Magn. Reson. Med. 5:1368 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Robert Vink
    • 1
  1. 1.Department of Chemistry and BiochemistryJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations