Skip to main content

Part of the book series: The Subnuclear Series ((SUS,volume 29))

  • 69 Accesses

Abstract

Not only does the heterotic string admit a heterotic fivebrane as a soliton but the heterotic fivebrane admits as a soliton a heterotic string. This provides further evidence that the two theories may be dual descriptions of the same physics, with the strong coupling regime of one theory described by the weak coupling regime of the other. To illustrate this, we show how the energy-momentum tensor of the quadratic Yang-Mills action associated with the string reduces to that of an elementary fivebrane, and how the energy-momentum tensor of the quartic Yang-Mills action associated with the fivebrane reduces to that of an elementary string.

Work supported in part by NSF grant PHY-9045132

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Gross, J. A. Harvey, E. Martinec and R. Rohm, Nucl. Phys. B256, 253 (1985).

    Article  Google Scholar 

  2. M. J. Duff, E. Sezgin and C. N. Pope, Supermembranes and Physics in 2+1 Dimensions (World Scientific, 1990).

    Google Scholar 

  3. The existence of a heterotic fivebrane was conjectured on the basis of the dual formulations of D = 10 Supergravity in M. J. Duff, Class. Quantum Grav. 5, 189 (1988) and M. J. Duff in The Superworld II, edited by A. Zichichi (Plenum, New York, 1990).

    Google Scholar 

  4. A. Strominger, Nucl. Phys. B343, 167 (1990).

    Article  Google Scholar 

  5. M. J. Duff and J. X. Lu, Phys. Rev. Lett. 66, 1402 (1991).

    Article  Google Scholar 

  6. M. J. Duff and J. X. Lu, Nucl. Phys. B354, (1991) 129.

    Article  Google Scholar 

  7. M. J. Duff and J. X. Lu, Nucl. Phys. B354, (1991) 141.

    Article  Google Scholar 

  8. R. I. Nepomechie, Phys. Rev. D31 (1984) 1921; C. Teitelboim, Phys. Lett. B167, (1986) 69.

    Google Scholar 

  9. A. Dabholkar, G. W. Gibbons, J. A. Harvey, and F. Ruiz-Ruiz, Nucl. Phys. B340, 33 (1990).

    Article  Google Scholar 

  10. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975).

    Google Scholar 

  11. B. Grossman, T. W. Kephart and J. D. Stasheff, Commun. Math. Phys. 96, 431 (1984); D. H. Tchrakian, J. Math. Phys. 21, 166 (1980).

    Article  Google Scholar 

  12. A. H. Chamseddine, Nucl. Phys. B185, 403 (1981); E. Bergshoeff, M. de Roo, B. de Wit, and P. Van Nieuwenhuizen, Nucl. Phys. B195, 97 (1982); G. F. Chapline and N. S. Manton, Phys. Lett. 120B, 105 (1983).

    Article  Google Scholar 

  13. J. Ellis, P. Jetzer and L. Mizrachi, Nucl. Phys. B303, 1 (1988).

    Google Scholar 

  14. J. A. Harvey and A. Strominger, Phys. Rev. Lett. 66, 549 (1991).

    Article  Google Scholar 

  15. D. B. Fairlie and J. Nuyts, J. Phys. A17, 2807 (1984); S. Fubini and H. Nicolai, Phys. Lett. 155B, 369 (1985).

    Google Scholar 

  16. C. G. Callan, J. A. Harvey and A. Strominger, PUPT-1244, EFL-91-12 (1991).

    Google Scholar 

  17. A. Achucarro, J. M. Evans, P. K. Townsend and D. L. Wiltshire, Phys. Lett. B198, 441 (1987).

    Google Scholar 

  18. C. G. Callan and R. R. Khuri, PUPT-1218 (1990).

    Google Scholar 

  19. G. Horowitz and A. Strominger, UCSBTH-91-06.

    Google Scholar 

  20. B. Campbell, J. Ellis, S. Kalara, D. V. Nanopoulos and K. Olive, CERN-TH-5833/90.

    Google Scholar 

  21. S. Kalara and D. V. Nanopoulos, CTP-TAMU-14/91.

    Google Scholar 

  22. A. Font, I. Ibanez, D. Lüst and F. Quevado, CERN-TH-5790/90.

    Google Scholar 

  23. M. J. Duff and J. X. Lu, Nucl. Phys. B357, 534 (1991).

    Google Scholar 

  24. G. Callan, J. A. Harvey ad A. Strominger PUPT-1233 (1991).

    Google Scholar 

  25. I. Antoniadis, C. Bachas, J. Ellis and D. V. Nanopoulos, Phys. Lett. B211, 393 (1988) and Nucl. Phys. B328, 117 (1989).

    Google Scholar 

  26. M. J. Duff and J. X. Lu, CTP-TAMU-29/91, to appear in Phys. Lett. B.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duff, M.J. (1992). A Duality Between Strings and Fivebranes. In: Zichichi, A. (eds) Physics at the Highest Energy and Luminosity. The Subnuclear Series, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3402-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3402-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6503-7

  • Online ISBN: 978-1-4615-3402-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics