Skip to main content

Emergence of Visual Cortical Areas: Patterns of Development of Neuropeptide-Y Immunoreactivity and Somatostatin-Immunoreactivity in the Cat

  • Chapter
  • 147 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 222))

Abstract

A prominent feature in the evolution of neocortex in higher mammals is the appearance of multiple areas of cortex which function in the hierarchal and parallel processing of sensory input and motor output. One way each of these areas can be identified is by their characteristic and specific patterns of connectivity with cortical and subcortical areas. How axonal growth cones from neurons in the thalamus and other cortical areas recognize which presumptive cortical area is an appropriate target and enter it to form connections is not known. In the cat, the earliest born neurons of the neocortex form a transient structure termed the “subplate” (Luskin and Shatz,’85) which has been reported be necessary to allow thalamocortical afferents to enter the cortical plate of area 17 (Ghosh et al.’90).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., 1946. Estimation of nuclear population from microtome sections. Anat. Rec. 94: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J.J.M., Nakamura, M.J., and Shatz, C.J., 1987. Transient cells of the developing telencephalon are immunoreactive neurons. Nature 325: 617–620.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J.J.M., and Shatz, C.J., 1989. Interstitial cells of the adult neocortex are the remnant of the early generated subplate neuron population. J.Comp. Neurol. 282: 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester, H., Vandesande, F., Orban, G.A., Brandon, C., and Vanderhaeghen, J.J., 1988. Heterogeneity of GABAergic cells in the cat visual cortex. J. Neurosci. 8: 988–1000.

    PubMed  CAS  Google Scholar 

  • Ghosh, A., Antonini, A., McConnell, S.K., Shatz, C.J., 1990. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347: 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Härfstrand, A., Fuze, K., Agnati, L.F., Eneroth, P., Zini, I., Andersson, K., von Euler, G., Terenius, L., Mutt, V., and Goldstein, M., 1986, Studies on neuropeptide y-catecholamine interactions in the hypothalamus and in the forebrain of the male rat. Relationship to neuroendocrine function. Neurochem. Int. 8: 355–376.

    Article  PubMed  Google Scholar 

  • Kostovic, I. and Rakic, P., 1980. Cytology and time of origin of interstitial neurons in the white matter of infant and adult human and monkey telencephalon. J. Neurocytol. 9: 219–242.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A. and Kater, S.B., 1989. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 12: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, J.M., Terenius,L., Hokfelt, T., Marthing, C.R., Tatemoto, K., Mutt, V., Polak, J., Bloom, S.R., and Goldstein, M., 1982. Neuropeptide-y (NPY) like immunoreactivity in peripheral noradrenergic neurones and effects of NPY on sympathetic function. Acta. Physiol. Scand. 116: 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M.B., and Shatz, C.J., 1985. Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J. Neurosci. 5: 1062–1075.

    PubMed  CAS  Google Scholar 

  • Marin-Padilla, M.,1972. Prenatal ontogenetic history of the principle neurons of the neocortex of the cat (Fells domestica). A Golgi study. II Developmental differences and their significance. Z. Anat. Entwickl. Gesch. 136:125–142.

    Article  CAS  Google Scholar 

  • Marin-Padilla, M., 1978. Dual origin of the mammalian neocortex and evolution of the cortical plate. Z. Anat. Embryol. 152: 109–126.

    Article  CAS  Google Scholar 

  • Mizukawa, K., McGeer, P.L., Vincent, S.R., and McGeer, E.G., 1987. The distribution of somatostatin-immunoreactive neurons and fibers in the rat cerebral cortex: light and electron microscopic studies. Brain Research, 426: 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos, G.C., J.G. Pamavelas, and Cavanagh, M.E., 1987. Extensive co-existence of neuropeptides in the rat visual cortex. Brain Res. 420: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Price, D.J. and Zumbroich, T.J., 1989. Postnatal development of corticocortical efferents from area 17 in the cat’s visual cortex. J. Neurosci. 9: 600–613.

    PubMed  CAS  Google Scholar 

  • Rakis, P., 1988. Specification of cerebral cortical areas. Science 241: 170–176.

    Article  Google Scholar 

  • Valverde, F. and Facal-Valverde, M.V., 1988. Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study. J. Comp. Neurol. 269: 168–192.

    Article  PubMed  CAS  Google Scholar 

  • Wahle, P. and Meyer, G. J., 1987. Morphology and quantitative changes of transient NPY-ir neuronal populations during early postnatal development of the cat visual cortex. J. Comp. Neurol. 261: 165–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hogan, D., Berman, N.E.J. (1991). Emergence of Visual Cortical Areas: Patterns of Development of Neuropeptide-Y Immunoreactivity and Somatostatin-Immunoreactivity in the Cat. In: Bagnoli, P., Hodos, W. (eds) The Changing Visual System. NATO ASI Series, vol 222. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3390-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3390-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6497-9

  • Online ISBN: 978-1-4615-3390-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics