Progress and Perspectives in Squeezing

  • Elisabeth Giacobino
  • Thierry Debuisschert
  • Jerome Mertz
  • Laurent Hilico
  • Antoine Heidmann
  • Serge Reynaud
  • Claude Fabre
Part of the NATO ASI Series book series (NSSB, volume 282)

Abstract

A very successful way to produce squeezed light has been to use parametric generation in a crystal having a second order type non-linearity. In parametric generation, a single pump photon is down-converted into a pair of simultaneous photons. Degenerate parametric generation in a cavity has been shown to yield a high amount of quadrature squeezed light1. Non degenerate parametric generation gives rise to “twin” beams, presenting a high degree of quantum intensity correlation. The fluctuations in the intensity difference between two such fields is reduced below the standard quantum limit2.

Keywords

Noise Reduction Shot Noise Optical Parametric Oscillator Noise Spectrum Excess Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Phys. Rev. Lett. 57, 2520 (1986).CrossRefGoogle Scholar
  2. 2.
    S. Reynaud, C. Fabre, and E. Giacobino, J. Optical Society Am. B4, 1520 (1987).CrossRefGoogle Scholar
  3. 3.
    J.G. Rarity and P.R. Tapster, in International Conference on Quantum Electronics Technical Digest Series Vol. 8, p 8 (Optical Society of America, Washington D.C., 1990).Google Scholar
  4. 4.
    O. Aytur and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).CrossRefGoogle Scholar
  5. 5.
    A. Heidmann, R.J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, Phys. Rev. Lett. 59, 2555 (1987).CrossRefGoogle Scholar
  6. 6.
    T. Debuisschert, S. Reynaud, A. Heidmann, E. Giacobino, and C. Fabre, Quantum Opt. 1, 3 (1989).CrossRefGoogle Scholar
  7. 7.
    C.D. Nabors and R.M. Shelby, Phys. Rev. A40, 1428 (1989).Google Scholar
  8. 8.
    N.C. Wong, K.W. Leong, and J.H. Shapiro, Opt. Lett. 15, 891 (1990).CrossRefGoogle Scholar
  9. 9.
    J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre and E. Giacobino, submitted to Opt. Lett. Google Scholar
  10. 10.
    C. Fabre, E. Giacobino, A. Heidmann, and S. Reynaud, J. de Physique 50, 1209 (1989).CrossRefGoogle Scholar
  11. 11.
    J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud, Phys. Rev. Lett. 64, 2897 (1990).CrossRefGoogle Scholar
  12. 12.
    L.A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, R.J. Horowicz, Nuovo Cimento, D10, 959 (1988).CrossRefGoogle Scholar
  13. 13.
    W.H. Richardson, S. Machida, and Y. Yamamoto, in International Conferenceon Quantum Electronics Technical Digest Series Vol. 8, p 395 (Optical Society of America, Washington D.C., 1990).Google Scholar
  14. 14.
    S. Reynaud and A. Heidmann, Opt. Commun. 71, 209 (1989).CrossRefGoogle Scholar
  15. 15.
    J. Mertz, A. Heidmann, C. Fabre, submitted to Phys. Rev. A.Google Scholar
  16. 16.
    E. Giacobino, C. Fabre, S. Reynaud, A. Heidmann, R.J. Horowicz, in “Photons and Quantum Fluctuations” ed. E.R. Pike and H. Walther, Adam Hilger, Bristol UK (1988).Google Scholar
  17. 17.
    J.J. Snyder, E. Giacobino, C. Fabre, A. Heidmann, and M. Ducloy, J. Opt. Soc. Am 7, 2132 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Elisabeth Giacobino
    • 1
  • Thierry Debuisschert
    • 1
  • Jerome Mertz
    • 1
  • Laurent Hilico
    • 1
  • Antoine Heidmann
    • 1
  • Serge Reynaud
    • 1
  • Claude Fabre
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de l’ENS, associé au CNRSUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations