Advertisement

Cavity Q.E.D.: Fundamental Theory of the Micromaser and Measurements of its Cavity Field

  • R. K. Bullough
  • N. M. Bogoliubov
  • N. Nayak
  • B. V. Thompson
Part of the NATO ASI Series book series (NSSB, volume 282)

Abstract

This paper reports a new theoretical investigation, numerically based, of the action of the one-atom one-mode micromaser. In the recent experiments1,2 on the Garching micromaser1–4 there is at most one 85Rb atom in the maser cavity during an atomic transit time tint ~ 35µ sec. But atoms enter with a repetition rate Tp (say) ~ 7000µ sec, so that the cavity is empty of atoms for more than 99%, of the time. The main result of this paper is that if the empty-of-atoms time Tp-tint is reduced towards the values of tint itself, the system acts more like a maser with infinite cavity Q even at the now realised Q and temperature T1,2 Q = 3 × 1010, T = 0.5oK. Thus in distinction to previous discussions, e.g.5, we suggest that it may be possible to create Fock states at this Q and T. However, as Tp is reduced, the theoretical problem becomes complicated by the possibility of more than one atom being in the cavity at the same time.

Keywords

Trapping State Quantum Group Heat Bath Rydberg Atom Cavity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Rempe, F. Schmidt-Kaler and H. Walther, Phys. Rev. Lett. 44: 2783 (1990).CrossRefGoogle Scholar
  2. 2.
    Gerhard Rempe and Herbert Walther, Phys. Rev. A 42: 1650 (1990).CrossRefGoogle Scholar
  3. 3.
    D. Meschede, H. Walther and G. Müller, Phys. Rev. Lett. 54: 551 (1985).CrossRefGoogle Scholar
  4. 4.
    G. Rempe, H. Walther and N. Klein, Phys. Rev. Lett. 58: 353 (1987).CrossRefGoogle Scholar
  5. 5.
    P. Meystrè, G. Rempe and H. Walther Opt. Lett. 13: 1078 (1988).CrossRefGoogle Scholar
  6. 6.
    M. Chaichian, D. Ellinas and P. Kulish, Phys. Rev. Lett. 65: 980 (1990).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    L.A. Takhtajan, Adv. Stud. Pure Math. 19: 435 (1989).MathSciNetGoogle Scholar
  8. 8.
    R.K. Bullough, S. Olafsson, Yu-zhong Chen and J. Timonen, in: “Physics and Geometry”, NATO ARW and Proc. XVIIIth Intl. Conf. on Diff. Geom. Methods in Theor. Phys., Ling-Lie Chau and Werner Nahm eds., Plenum, New York (1990) and references.Google Scholar
  9. 9.
    R.K. Bullough and J. Timonen, “Quantum groups and quantum complete integrability: theory and experiment” in: Proc. 19th Intl. Conf. on Diff. Geom. Methods in Theor. Phys., C. Bartocci, U. Bruzzo and R. Cianci eds., Springer Lecture Notes in Physics and the references in Ref. 6 there. To appear in 1991.Google Scholar
  10. 10.
    N.M. Bogoluibov and R.K. Bullough. To be published.Google Scholar
  11. 11.
    E.T. Jaynes and F.W. Cummings, Proc. IEEE 51: 89 (1963).CrossRefGoogle Scholar
  12. 12.
    P. Filipowicz, J. Javainen and P. Meystrè, Phys. Rev. A 34: 3077 (1986).CrossRefGoogle Scholar
  13. 13.
    L.A. Lugiato, M.O. Scully and H. Walther, Phys. Rev. A 36: 740 (1987).CrossRefGoogle Scholar
  14. 14.
    F.W. Cummings and A.K. Rajagopal Phys. Rev. A 39: 3414 (1989).Google Scholar
  15. 15.
    A.J. Macfarlane, J. Phys. A: Math. Gen. 22: 4581 (1989).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    L.C. Bidenharn, J. Phys. A: Math. Gen. 22: L873 (1989).CrossRefGoogle Scholar
  17. 17.
    P.P. Kulish and E.V. Damaskinsky, J. Phys. A: Math. Gen. 33: L415 (1990).MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Brecha. This meeting.Google Scholar
  19. 19.
    N. Nayak, R.K. Bullough, B.V. Thompson and G.S. Agarwal, IEEE J. Quant. Electronics QE-24:1331 (1988).CrossRefGoogle Scholar
  20. 20.
    N. Nayak, R.K. Bullough and B.V. Thompson in: “Coherence and Quantum Optics”, J.H. Eberly, L. Mandel and E. Wolf eds., Plenum, New York, (1990), pp.809–813.CrossRefGoogle Scholar
  21. 21.
    N. Nayak, B.V. Thompson and R.K. Bullough in: “Proc. ECOOSA ‘80 meeting”, Rome, 7–11 November 1990, M. Bertolotti and E.R. Pike eds. To appear in “Quantum Optics”, June 1991.Google Scholar
  22. 22.
    R.K. Bullough, M.R.B. Wahiddin, R.R. Puri, S.S. Hassan and G.P. Hildred, in: as in Reference 20.Google Scholar
  23. 23.
    R.K. Bullough, Hyperfine Interactions 37: 71 (1987) and references.CrossRefGoogle Scholar
  24. 24.
    R.K. Bullough and 10 co-authors in “Squeezed and Nonclassical Light”, P. Tombesi and E.R. Pike eds., Plenum Publ. Corp., New York (1989) and references.Google Scholar
  25. 25.
    G.S. Agarwal, R.K. Bullough and G.P. Hildred, Optics Commun., 39: 23 (1986).CrossRefGoogle Scholar
  26. 26.
    G.S. Agarwal, R.K. Bullough, G.P. Hildred and N. Nayak, “Cavity quantum electrodynamics at arbitrary Q and temperature T”. To be published.Google Scholar
  27. 27.
    G.S. Agarwal, R.K. Bullough and N. Nayak, “Probing the dressed states of an atom interacting with a quantized field”. Submitted to Opt. Commun., March 1991.Google Scholar
  28. 28.
    N. Nayak, B.V. Thompson and R.K. Bullough, “Cavity quantum electrodynamics: finite temperature theory of the 85Rb atom maser”. To be published.Google Scholar
  29. 29.
    J.M. Raimond, P. Goy, M. Gross, C. Fabre and S. Haroche, Phys. Rev. Lett. 49: 117 (1982).CrossRefGoogle Scholar
  30. 30.
    M.R.B. Wahiddin, S.S. Hassan, J. Timonen and R.K. Bullough in “Coherence and Quantum Optics”, J.H. Eberly, L. Mandel and E. Wolf eds., Plenum, New York (1990), pp.1195–1200.CrossRefGoogle Scholar
  31. 31.
    M.R.B. Wahiddin, S.S. Hassan, R.R. Puri, J. Timonen and R.K. Bullough in: as in Reference 21.Google Scholar
  32. 32.
    S. Haroche. Private Communication at the Davos Meeting, October 1990.Google Scholar
  33. 33.
    M. Brune. Private Communication. This meeting.Google Scholar
  34. 34.
    V.I. Arnold, “Mathematical Methods of Classical Mechanics”, Springer-Verlag, Heidelberg (1978).Google Scholar
  35. 35.
    A. Janussis and 5 co-authors, Hadronic J. 6: 1563 (1983) and references.Google Scholar
  36. 36.
    A. Jannusis, Quantum Group and the Lie-Admissible Q-Algebra, in “Proc. 5th Intl. Conf. on Hadronic Mechanics and Nonpotential Interactions”, and references. To apear 1991.Google Scholar
  37. 37.
    A. Jannusis, G. Brodimas, S. Baskontas and D. Vavougios “Quantum Group for Linear Combination of Bose and Fermi Operators”, and references. Preprint 1990. Dept. of Phys., Univ. of Patras, Greece.Google Scholar
  38. 38.
    R.R. Puri and R.K. Bullough, J. Opt. Soc. Am. B 5: 2021 (1988).CrossRefGoogle Scholar
  39. 39.
    H. Risken “Fokker-Planck Equations”, Springer-Verlag, Berlin (1984).CrossRefGoogle Scholar
  40. 40.
    N. Nayak, B.V. Thompson and R.K. Bullough. To be published.Google Scholar
  41. 41.
    Taken from the lecture by H. Walther at the Hyderabad meeting, January 5–10, 1991.Google Scholar
  42. 42.
    Tarik M. Al-Zubaydy “The collapse and revival of Rydberg atoms in a microwave cavity”. M.Sc. Thesis, UMIST, Manchester, April 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. K. Bullough
    • 1
  • N. M. Bogoliubov
    • 1
  • N. Nayak
    • 1
  • B. V. Thompson
    • 1
  1. 1.Department of MathematicsUMISTManchesterUK

Personalised recommendations