Advertisement

Neutrons for Capture Therapy Produced by 72 MeV Protons

  • J. F. Crawford
  • H. Reist
  • H. Conde
  • K. Elmgren
  • T. Rönnqvist
  • E. Grusell
  • B. Nilsson
  • O. Pettersson
  • P. Stromberg
  • B. Larsson

Abstract

Neutrons (and protons) move in nuclear matter with an energy which is roughly the same in all nuclei, and which can be thought of as a temperature (of about 1011K). Neutrons from the fission process therefore emerge with an energy corresponding to this temperature; so do most but not all neutrons from the ‘spallation’ process, in which fast protons strike nuclei and liberate neutrons. The use of a proton beam or a reactor for the production of neutrons for capture therapy (NCT) thus present basically similar problems: to reduce the energy of the neutrons from the MeV level at which they emerge to the few keV required for NCT. There are however significant differences: the total intensity of a spallation source is much lower – some four orders of magnitude between the layout planned at the Paul Scherrer Institute (PSI) and the Petten reactor, for example. On the other hand, the source is much smaller: of the order of a cubic centimetre as against the cubic metre of a typical reactor. This means that it can be made mobile, as in the PSI layout, and in practice one can work closer to it. Again, less γ radiation is produced by a spallation source.

Keywords

Proton Beam Neutron Source Heavy Water Neutron Fluence Paul Scherrer Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. F. Briesmeister (Ed), ‘MCNP - A General Monte Carlo Code for Neutron and Photon Transport, Version 3A’ Los Alamos National Laboratory, LA-7396-M, Rev. 2 (1986).Google Scholar
  2. [2]
    H. Condé, E. Grusell, B. Larsson, C.-B. Pettersson, L. Thuresson, J. F. Crawford, H. Reist, B. Dahl and N. G. Sjöstrand, Nuclear Instruments and Methods in Physics Research A261, 587–590 (1987).Google Scholar
  3. [3]
    H. Condé, J. F. Crawford, B. Dahl, E. Grusell, B. Larsson, C.-B. Pettersson, H. Reist, N. G. Sjöstrand, O. Sornsuntisook, and L. Thuresson, Strahlentherapie und Onkologie 165, 2/3, 340–342 (1989).Google Scholar
  4. [4]
    E. Grusell, H. Condé, B. Larsson, T. Rönnqvist, O. Sornsuntisook, J. F. Crawford, H. Reist, B. Dahl, N. G. Sjöstrand, and G. Russell, ‘The Possible Use of a Spallation Neutron Source for Neutron Capture with Epithermal Neutrons’, pp249–258 in ‘Neutron Beam Design, Development and Performance for Neutron Capture Therapy’, Eds O. K. Harling, J. A. Bernard and R. G. Zamenhof, Plenum Press, New York (1990).CrossRefGoogle Scholar
  5. [5]
    D. Gabel, private communication.Google Scholar
  6. [6]
    T. Nakamura, M. Yoshida and K. Shin, NIM 151, 493–503 (1978).Google Scholar
  7. [7]
    T. Nakamura, M. Fujii and K. Shin, Nucl. Sci. and Engineering 83, 444–458 (1983).Google Scholar
  8. [8]
    T. A. Broome, D. R. Perry and G. B. Stapleton, Health Physics 44, 487–499 (1983).PubMedCrossRefGoogle Scholar
  9. [9]
    D. George and V. Vrankovic, PSI Magnet Group, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. F. Crawford
    • 1
  • H. Reist
    • 1
  • H. Conde
    • 2
  • K. Elmgren
    • 2
  • T. Rönnqvist
    • 2
  • E. Grusell
    • 3
  • B. Nilsson
    • 3
  • O. Pettersson
    • 3
  • P. Stromberg
    • 3
  • B. Larsson
    • 4
  1. 1.Paul Scherrer InstituteVilligenSwitzerland
  2. 2.Department of Neutron ResearchUniversity of UppsalaUppsalaSweden
  3. 3.Department of Radiation SciencesUniversity of UppsalaUppsalaSweden
  4. 4.Strahlenbiologisches InstitutZürichSwitzerland

Personalised recommendations