Biodistribution and Pharmacokinetics of p-Boronophenylalanine in C57BL/6 Mice with GL261 Intracerebral Tumors, and Survival Following Neutron Capture Therapy

  • G. Solares
  • R. Zamenhof
  • S. Saris
  • D. Wazer
  • S. Kerley
  • M. Joyce
  • H. Madoc-Jones
  • L. Adelman
  • O. Harling

Abstract

Because much of the theoretical rationale for NCT rests on the availability of agents capable of selectively transporting 10B to tumor cells, the ability to quantify differential 10B distributions in tissue exposed to such agents is clearly of major importance. Also, since the precise intracellular location of 10B can strongly influence the biological effect of the alpha particle and 7Li recoil radiation following thermal neutron capture by 10B1, an analytic technique with a resolution of 2–3 μm is of obvious value. We have implemented a modified version of an autoradiography technique, originally developed in our laboratory at MIT2 and added a computer-aided analytic capability based on a Macintosh-II computer with a CCD TV camera and Image Analyst software (Automatix Corp., Billerica, Massachusetts)3–4. We will briefly describe our implementation of this technique and present results from a p-boronophenylalanine (BPA) biodistribution and pharmacokinetic study in an intracerebral mouse glioma and a survival study to evaluate the efficacy of NCT in this tumor model.

Keywords

Toxicity Boron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gabel, S. Foster, R. Fairchild, “The Monte Carlo Simulation of the Biological Effect of the 10B(n,α)7Li Reaction in Cells and Tissue and Its Implication for Boron Neutron Capture Therapy,” Radiation Res. 111:14, (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Kirsch, “Neutron-induced Track Etch Autoradiography: Studies in Track Detection and Neutron Capture Therapy,” Ph.D. Thesis, MIT Department of Nuclear Engineering, February (1984).Google Scholar
  3. 3.
    R. Zamenhof, S. Clement, K. Lin, C. Lui, D. Ziegelmiller, O. Harling, “Monte Carlo Treatment Planning and High-Resolution Alpha-Track Autoradiography for Neutron Capture Therapy,” Strahlenther. Onk. 165:90, (1989).Google Scholar
  4. 4.
    G. Solares, “High Resolution Alpha Track Autoradiography and Biological Studies of Boron Neutron Capture Therapy,” Ph.D. Thesis, MIT Department of Nuclear Engineering, May (1991).Google Scholar
  5. 5.
    O. Harling, R. Zamenhof, J. Yanch, R. Choi, G. Solares, R. Rogus, D. Moulin, L. Johnson, I. Olmez, S. Wirzek, J. Bernard, C. Nwanguma, D. Wazer, S. Saris, C. Sledge, H. MadocJones,“Boron Neutron Capture and Radiation Synovectomy Research at the MIT Research Reactor ” Nucl. Sci. Eng. (in press)Google Scholar
  6. 6.
    J. Coderre, J. Glass, R. Fairchild, P Micca, I. Fand, D. Joel,“Selective Delivery of Boron by the Melanin Precursor Analogue p-Boronophenylalanine to Tumors Other Than Melanoma,” Cancer Res. 50:138, (1990).PubMedGoogle Scholar
  7. 7.
    O. K. Harling, J. Bernard, R. G. Zamenhof, eds., Neutron Beam Design, Development, and Performance for Neutron Capture Therapy, Plenum Press, New York (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • G. Solares
    • 1
  • R. Zamenhof
    • 2
  • S. Saris
    • 2
  • D. Wazer
    • 2
  • S. Kerley
    • 2
  • M. Joyce
    • 2
  • H. Madoc-Jones
    • 2
  • L. Adelman
    • 2
  • O. Harling
    • 1
  1. 1.Nuclear Reactor LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Tufts University School of Medicine and New England Medical Center HospitalsBostonUSA

Personalised recommendations